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1 Introduction

Through perception and experience, each human being gathers data all the time and eventually
process that data into representations that become our grasp onto the universe for interacting. We
represent ideas and concepts for thinking and language and even get pre-representations of things we
do not know. Although artificial intelligence has become a very popular expression, one can remark
that representation is a key prerequisite for any of processing that we consider whether we talk about
our intelligence as human beings our artificial intelligence for automatic machines. On one side of the
spectrum of possibilities, excellent representations do not even require further processing and simple
decision mechanisms on raw data are enough for good results. On the other side of the spectrum of
possibilities, poor representations actually do require sophisticated expert-based or advanced statistical
processing to output good results by taking into account domain-specific knowledge. During the
2010s, some major technological obstacles were crossed allowing the development of the so-called
deep learning marked by the coming of a new era where the frontier between representation and
processing becomes very blurry.

In many machine learning fields, defining a clear and sound objective is always key to produce
good research but unfortunately, several so-called more intelligent tasks are impossible to define
that well which leads us in this dissertation in statistics to insist on the statistical representation side
rather than on the statistical processing side. Therefore, our main subject is representation: (i) of data
among its groups in the first chapter, (ii) of data among its characteristics in the second chapter and
(iii) of predictions with uncertainty in the third chapter. At the crossroads of three different fields
namely statistics, deep learning and optimal transport that recently gained much scientific attention,
our effort leverages that wealth of existing research to tackle representations in three contributions
with different contexts: Wasserstein Clustering (DiWaC and GeWaC) to identify groups among data,
Infinitesimal Wasserstein Maximal Distortion (InWaMaDi) to highlight relevant characteristics of data
and Hypothesis of an Uncertainty Model (HUM) to estimate both supervised predictions and some
uncertainty information.

2 Machine Learning Landscape

This dissertation focuses on neural networks (a. k. a. deep techniques) that enjoy recent tremendous
sucess as a technology but much of the current described work is applicable to other tools like decision
trees [Breiman, 2017] or kernel-based methods [Andrew, 2001]. That being said, deep learning changed
scientists traditions about data: usually researchers separated feature-extraction and automatic-
decision making tasks into two jobs. Nowadays, this frontier becomes merely a blurred line as best
systems are built by doing feature extraction and automatic decision simultaneously along layers
(hence the “deep” adjective as more layers give more sophisticated systems). Mixing feature extraction
and automatic decision in layers amplified by much more computation power than ever let neural
networks become fancy again. The whole machine learning scientific community beyond those who
uses neural networks refer to these low-financial-support periods as “artificial intelligence winters”.
In the 1990s and 2000s, even in a major conference named Neural Information Processing Systems,
popular methods like kernel-based ones were more popular than neural networks at a time when
the keyphrase “deep learning” was merely confidential. As announced in the seminal keynote at
the International Joint Conference on neural networks in 2011, neural networks were back again in
the performance leaderboards top methods thanks to recent hardware considerable computational
improvements. Then, between 2011 and 2014, neural networks algorithms beat state-of-the-art records
in several fields such as image processing, computer vision, speech recognition, machine translation
with almost only artificial neural networks scientists and without researchers from specific domain
expertise as explained by Ng [2013] which gave the surprising hope for an increasing ease in a growing
list of applications.

During the last decade, a pleasing end-to-end paradigm emerged and says that systems should
not be trained sequentially (or even independently) but rather simultaneously as a whole [Ng, 2018].
This intuitive belief that consists in training several layers of a neural network at once is widespread



for better empirical results. Unfortunately, doing an end-to-end training also means dealing with
black boxes as intermediate neural networks layers that are difficult to interpret (and are even not
identifiable whereas other less efficient methods still provide interpretation ease). End-to-end training
seems to be encouraged for better than other known styles of training empirically and especially in
Deep Learning [Bojarski et al., 2016].

Nevertheless, this statement must be handled with care for pragmatic reasons beyond industrial
scalability and loss of interpretable modularity as Glasmachers [2017] points out there are also some
other effects: feeding a deep neural network with the concatenation of raw data and some non-deep-
learning algorithms outputs is often hard to beat. For example, in video recognition [Schmid, 2013,
Crasto et al., 2019], it is recommended to augment the raw video voxels input with optical flow (which
is a processed version of the same raw video pixels but for motion estimation). Indeed, because of
the data starvation phenomenon (a. k. a. over-fitting), using off-the-shelves pretrained algorithms is
a simplistic form of transfer learning combining knowledge (and sometimes data) from the current
and from the previous tasks. Thus, pragmatically, it is sometimes useful not to follow the end-to-
end-training approach just for the sake of it: sequentially trained and/or optimized modules can
work very well and still provide the easiest interpretation for what each module does. One too naive
end-to-end-training approach would end up with a black box trained from scratch.

In this dissertation, there is a will to emphasize our scientific need to crack in deep learning black
boxes (end-to-end or not) because that’s how better data understanding gets in, beyond automatic
decisions.

2.1 Dimensions

In this dissertation, we will consider large scale settings so we must be specific about what is considered
large. Throughout the machine-learning-related fields, we can consider:

Cardinality N, the number of data points for train;
Dimensionality D, the dimensionality of one data point;

Output dimension K, the dimensionality of the automatic output decision (number of classes in
classification, the output space dimension for regression and beyond, the approximate number
of nodes in a grammar tree, or number of atoms of a chemical molecule graph...).

as emphasized by Harchaoui [2013] in the concept of machine learning cuboid. For each edge of this
cuboid, we have direct optimization implications for feasible computations and best results so far:

* N > 1 stochastic-gradient-based optimization algorithms are more suitable than in-memory
alternatives because we only need a few data points (mini-batches) at the same time per iteration;

* D > 1 some further analysis should be conducted: dimensionality reduction and domain-
specific knowledge must be used at once for fighting against the curse of dimensionality phe-
nomenon;

* K > 1 one-class-vs-rest strategies are preferred rather than one-class-vs-one strategies for
computational reasons. Indeed in a one-class-vs-rest strategy, we only need to combine K
decisions separating each class with all the rest whereas in a one-class-vs-one strategy, we would

Kx(K—1)
2

have decisions separating all combinations of classes pair.

Throughout this work, we are mainly interested in large N and large D data configurations
without considering large K issues. For example, in clustering settings, K should be small because
otherwise it defeats the data analysis purpose: having too many clusters does not help human beings
to understand data. Although the large N and large D case has already been successfully investigated
in the supervised classification context, at the beginning of this work (in 2016) little research had been
conducted but we observe that this key preoccupation is finally entitled to scientific attention today.

Along these three dimensions of data analysis in machine learning, this Ph.D. dissertation proposes
new (or revisited) representations: (i) simplifying the cardinality axis of N thanks to clustering in our
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tirst contribution, (ii) an attempt to better understand data at a coordinate level for a local dimensionality
axis of D relevance assessment in our second contribution, and (iii) re-interpreting the output axis of K
through uncertainty estimation in our third contribution.

2.2 Epistemology

Epistemology is the theory of knowledge [Newman, 2018, Ahmad, 2003]. In particular, in machine
learning, one epistemology has consequences on our beliefs, opinions, justifications and finally our
scientific methodology in our studies. Several epistemological ways to describe machine learning
exist and for this dissertation we choose one with probabilistic perspectives [Murphy, 2012] because
of its ease of sophisticated interpretation for insights. We believe data is coming from a phenomenon
that we call Nature that we represent by an idealized probabilistic distribution associated with a
random and often multivariate variable (or a pair or a tuple of this random multivariate variables).
In practice, we consider datasets as extracts of Nature. An (annotated) dataset is some collection of
independent realizations that are identically (sampled) distributed from what we call Nature. Of
course, this statement is falsifiable [Bernard, 1898] and maybe counter-intuitive but computer science,
statistical learning, machine learning, data science and all these young sciences mixing mathematics
and programming are just a few decades old, compared to more established several centuries old (or
even millenia old) fields such as mathematics, biology, physics, chemistry, medecine etc.

Mathematically, it is convenient to choose that epistemology (rather than an other one) in order
to introduce the notion of generalization capabilities of machine learning systems. Indeed, with
other epistemology, datasets have a higher status and generalization becomes ill-defined (with the ad
hoc notion of training error and testing generalization error). In this work, we accept that datasets
empirical distributions (sum of Dirac distributions) are approximated and noisy versions of an
idealized (probably smoother) distribution.

2.3 Different kinds of machine learning

Generally, for a given project, the job of a machine learning scientist (or data scientist depending on
the name given by economic trends) is decomposed in two phases often in a loop: (i) training time
(previous to or interleaved with a validation time) to match/imitate/reproduce the phenomenon
in the presence of groundtruth information (labels, reward) for learning a model, (ii) test time (or
execution time of the system we have just built) without access to groundtruth information because
we are using our trained model. Following pioneers in machine learning [LeCun, 2015], we can
roughly separate the machine learning landscape in three depending on what is accessible during
training, validating and testing times: first supervised learning, second unsupervised learning and
third reinforcement learning as this dissertation can find applications in all of these three machine
learning fields.

For the purposes of notation, univariate functions are here generalized to the multivariate case by
applying the associated univariate function to each entry and then concatenating everything such that
the function output has the same shape as the input. For example, z € RX is a vector whose K € IN*

-
coordinates z¥) are indexed by k, then log(z) = [log(z(l)), ..., log(zM), ..., log(z(K))]

2.3.1 Supervised Learning

Nature provides a pair of (input, output) random variables (x, y).
(x,y) ~ Nature (1)
collected in a training labelled dataset (or Nature extract as stated above):

dataset = (x1,y1),..., (Xi,¥i),-- -, (XN, YN) (2)
where each (x;, y;) is a realization of (x,y) ~ Nature



On the one hand, input x often represents a question in various forms such as: a vector of numbers
(categories, integers or floating decimal numbers), an image or a video (made of pixels, voxels
in channels and beyond [Ponce and Forsyth, 2011]), a sound (its waveform or its time-frequency
representation [Li et al., 2016, Mallat, 2008]), a gene (its ATGC or RNA-seq representation [Barillot
et al., 2012]), a chemical molecule (its 3D graphical representation [Zaslavskiy, 2010]) etc. On the other
hand, output y represents the answer of the question x in two main classes of problems: regression in
which we deal real numbers and classification dealing with categories and integers. Of course, these
kinds of separations are limited but somewhat useful to describe the main problems.
Many supervised learning problems share the same kind of optimization objective:

m]_i_n IE:(x,y)~Nature (E (Y/ f(x)) ) (3)

where £(y, F(x)) measures the discrepancy of predicting 7 (x) from an input x instead of the ground
truth label y. This equation Eq. (3) behaves like an aggregation of errors (when 'y # F(x)) summed up
into one value (the lower, the better) over data. In layman’s terms, ¢(y, F(x)) is how much the system is
punished for a mistake during training and is preferably zero for no error: a perfect y = F(x) scenario.
More precisely, statistical learning becomes the task of finding parameters 8 = 0r of function F that
has the right structure (tree, random forest, linear or kernel-based support vector machines, neural
networks etc.) that minimizes £:

IIliI’ngr L(B;) (4)
‘C(B]:) = ]E(x,y)NNature (6 (YI "r(x)))

Indeed, the formulation of Eq. (4) has the merit of generalizing almost all supervised learning problems.

Beyond the scope of this dissertation, there is a considerable amount of scientific works about
regularization notably inherited from Lagrangian optimization [Boyd and Vandenberghe, 2014] and
similar techniques. In a nutshell, our Eq. (3) is still valid to fit in this kind of research by simply
replacing the current function ¢ by function 7:

Uy, F(x) & 0(y, F(x)) + AQ(F) (5)

where () gives the predictor function F some desirable properties (see the books of Bonnans et al.
[2003] and of Boyd and Vandenberghe [2014] for further details) with a relative importance given by
A € Ry in order to provide generalization capabilities coping with the fact that we only have access to
a limited training dataset instead of Nature itself in practice.

In summary, supervised learning is finding a function F that maps x to y based on a training
dataset assuming that such an idealized function F* exists (sometimes we only need F* to only be a
relation and not necessarily a function):

y ~ F*(x) (6)

In order to build an estimator F of the desired decision function F*, we usually solve an optimization
problem:

F= min L(F) 7)
where the loss function £ is a proxy of all errors that we want to ideally minimize in one value £(F)
measuring all aggregated discrepancies between the ground truth y and prediction F(x).

In practice, we only have access to a limited amount of annotated (x, y) data that we call training
data to fit our prediction function F, so the £(F)s are estimated by approximations £(F) as if the
available data was all the data in the universe: almost as if the Nature smooth distribution was
replaced by the dataset empirical distribution. The hope consists in saying that at test time, for a new
and unseen input x coming from the same (x, y) distribution as in training time but where the true
output y is unknown, we can predict an estimated output y = F(x) that is close to the true output y.



Learning is possible because at training time, we have access to both the input x and output y in
a dataset. Back to our philosophical considerations about epistemology, we may consider that the
supervised learning task consists in compressing the relationship between the training pairs (x,y)ina
fitted predictor F that once trained, one only needs x to recover a lossy version of y ~ F(x). During
the “compression process of learning” we accept some loss in information that we sacrifice to get
better compression rate in general non-lab conditions. This way, we can study many machine learning
tools such linear dot products, tree, random forest of trees, non-linear kernel evaluations, vanilla
neural networks, convolutional or recurrent neural networks etc. and their respective algorithms,
computations and structures with the same compression-flavored point of view.

In supervised learning we have:

x and y at training time
x without y at testing time that we estimate

Looking at supervised learning as a compression problem is interesting for understanding recurring
trade-off through out this scientific literature: models should be sophisticated enough to recover
outputs information from inputs without too much loss of information (complexity and number shoud
go up) while still being sufficiently sober (i. e. not too sophisticated,(complexity and number goes
down) otherwise generalization capabilities dramatically drop down while compression is given up.

2.3.2 Unsupervised Learning

In unsupervised learning, Nature does not provide any more information than the data x itself.
x ~ Nature (8)

This machine learning field is useful for data analysis that has more broader scientific purposes than
the industrial applications of supervised learning.

x without any labeled y information that we still estimate to get structure from data for
the sake of interpretable knowledge discovery

Imitating data (Generative Adversarial Networks GANSs for example) [Goodfellow et al., 2014] and
clustering [Jain, 2010] are two unsupervised learning tools to exhibit data analysis as a fundamentally
intelligent tool for scientists, intelligent etymologically meaning from latin understanding the underly-
ing structure of data. Unsupervised learning is often ill-posed which remains a mystery because the
same automatic tasks can be evaluated subjectively many times by different human beings with still
some consistency (e. g. for clustering) which gives hopes for improvements. More mathematically,
indeed, we use the Hadamard definition [Maz’ya and Shaposhnikova, 1999] for a well-posed problem
and we understand that all these three points cannot apply in clustering objectives optimization:

1. a solution exists,
2. the solution is unique,
3. the solution’s behaviour changes continuously with the initial conditions.

In this dissertation, clustering is tackled in a chapter as the computation of the maximal optimal
transports between groups (e. g. clusters) while leveraging the GANs scientific literature in terms of
numerical tools. Furthermore, another chapter is trying to make use of enhanced Wasserstein distance
among distributions for relevant features weighting of data without explicit supervision from any
task but rather the likeness of each point with the remaining dataset points that we express with the
notion of worst optimal transport once again thanks to its powerful mathematics and algorithmics
machineries.



2.3.3 Reinforcement Learning

Reinforcement Learning [Sutton and Barto, 2018] is an area of machine learning about how agents
(say robots) sequentially observing environment inputs x from Nature could take the best sequence of
actions y in order to maximize some untimely reward r also given by Nature and not necessarily after
each action while maintaining a state representation s (or z) of both history and environment.

(x,r) ~ Nature, but r is not always given (i.e. we often have r = 0) )

For example, playing automatically chess, Go, cards are famous applications associated with artificial
intelligence victories in controlled settings face to expert human beings.
In unsupervised learning, we have:

x but no supervised action y is given, only some reward r once in a while during
training time

x with some reward r once in a while at testing time and we estimate the best sequence
of actions y

In reinforcement learning, taking into account uncertainty estimation is certainly helpful for the
distentangling the recurring exploration / exploitation dilemma [Sutton and Barto, 2018]. This opens
up a potentially large range of possible applications for our contribution dealing with uncertainty.

3 Neural Networks

Since their introduction in computer science [Rosenbaltt, 1957], artificial neural networks loosely
inspired by the biological neurons did not stop fascinating researchers until today. In a nutshell, a
neural network implements a function F from RP to RX by the composition of L € IN* layers (or
sub-functions) (Fy)¢—1,. 1) of the form:

(V¢ e[1,L—-1]) F; = aoLineary (10)
Fi = Lineary,

where:

¢ The non-linear element-wise function a called activation is often chosen among the hyperbolic
tangent function, the positive part function (or rectified linear unit ReLU), the sigmoid function
(or logit function).

* The Linears functions are matrix-vector product linear operators in the form of:
(Vx € R") Linear;(x) = M/x + by (11)

for M, € R%*¥ and b, € R with (if,0,) € N* x N* and (V¢ € [1,L —1]) o0, = ipyq (if = D
and oy = K)

Thanks to the universal approximation theorem of Hornik [1991], we only need mild conditions on a
(unbounded and non-constant) for the set of functions expressed in this form to be dense over the set
of Lebesgue-integrable functions.

This means that each time, we have an objective function to minimize over a set a function, there
exists a neural network F that is able to approximate the optimal solution arbitrarily well. In terms
of computer science, this is good news because instead of minimizing over a set of functions, we
can reasonably minimize over a set of parameters approximating that function we are looking for.
Thus, we transformed a functional optimization problem into a numerical optimization problem over
the matrices Mys, the biases bys but also the number of layers L and the input/output parameters
(i7,00). The initial enthusiasm provoked by this statement was dampened through decades because
this is only an existence theorem that does not provide a way in itself to find these parameters.



Moreover it turns out that the statistical estimation of these parameters is difficult due to the over-
fitting phenomenon [Scholkopf and Smola, 2001] (a. k. a. data starvation which is a complementary
metaphor). Optimization is also slow (especially in the 1960s, 1970s, 1980s and even 1990s compared
to nowadays).

Recently, neural networks became suddenly more plausibly useful since storage and computations
were getting much faster and cheaper. Indeed, on top of a dramatic computational speed improve-
ment, fast random data access is also crucial for realistic real-world applications. During the 1990s,
even with industrial-level quality results, scientists in neural networks for machine learning did not
catch the whole Research community world wide attention at first. As data storage and collection
problems have been nicely solved thanks to the decrease of hardware’s costs (and thus the increase
of available computational power especially with the rise of CPUs and GPUs parallelism and distri-
bution), increase of data access speed and software solutions (like HDFS [Shvachko et al., 2010] and
Spark [Zaharia et al., 2010]) that all appeared in an era around the 2000s called Big data. In the 2010s,
these tools for manipulating data were key for large-scale training and execution of machine learning
engines [Castelluccio, 2017]. Another factor of scientific success is the extensive use of world-wide
open source repository which pioneered in terms of reproducibility and best practice sharing. On
the theoretical part, the mild conditions of the universal approximation theorems [Cybenko, 1989,
Hornik, 1991, Gao and Jojic, 2016] only gives approximation ability up to our statistical estimation
ability (hence the need of big cardinality datasets compared to dimensionality). Otherwise, neural
networks notoriously suffer from data starvation (a. k. a. overfitting) and the neural networks need ap-
propriate structures, computations and optimization procedures to inject enough knowledge into the
systems in order to get the tremendous sucess we benefit today. Still, in spite of these recent and great
improvements, there is a lack of solid theoretical grounds (especially compared to its Reproducing
Kernel Hilbert Space RKHS counterpart) and many open questions remain unanswered as of today
although we can mention the works of Vidal et al. [2017] and Arora et al. [2017].

3.1 Input Data

Thanks to the universal approximation theorem presented previouly, it is reasonable to parse several
kinds of input data to see how neural networks can be fed. Indeed, neural networks universal
approximation theorems do only provide an existence result of a desired function but no explicit
way to get or estimate it. Even with this important theorem, scientists sill have to work to build an
adequate deep learning structure to cope with the estimation problem of an almost unreachably ideal
neural networks parameters. Even if we had a procedure that could reach that ideal neural networks,
this would be fitted on training data only which is not a guarantee for good results on unseen yet data.

Historically [Rosenbaltt, 1957], input data x € RP is a vector fed to a function implemented by a
one-layer perceptron: a composition of a matrix-vector product and an element-wise sigmoid function.
At the same time, stochastic optimization tools were revisited, implemented for large scale settings
with the associated theoretical background provided by the Robbins-Monro theorem [Robbins and
Monro, 1951] (we will come back on it later). The idea of composition for more sophisticated neural
networks came fast with the introduction of multilayer perceptron [Rosenblatt, 1961] along with
the back-propagation algorithm which gracefully adapts the differenciation chain rule for efficient
algorithms (the forward step is the evaluation of the neural network function and the backward step is
the computation of its gradient with respect its parameter). Nowadays, thanks to much engineering
progress, more and more artificial intelligence promises are kept.

Since the dawn of the 1990s, new kinds of information media became available on computers
storage systems with increasing sophistication and some dramatic research-to-product type of im-
provements emerged:

Text Word processor softwares rapidly replaced typewriters and made natural language processing
possible and one can cite the old Reuters text dataset [Hayes and Weinstein, 1990] for example.
In terms of artificial intelligence, it seems that this medium along with genetics data are the most
difficult one;

Image Likewise, digital recording of photographs made the singleton dataset of Lena [Roberts, 1962] in
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image processing grow from only one to several thousands images size datasets with MNIST [Le-
Cun et al.,, 1989b] and to millions images size datasets such as ImageNet [Fei-Fei, 2010] and
beyond. The associated tremendous research progress made possible real-world applications in
everyday applications;

Sound Early speech recognition systems also benefit from datasets collection since one of the oldest:
TIMIT [Zue et al., 1990], even the music processing got its own MusicNet dataset [Thickstun
et al., 2018];

Video the recent 2018 YouTube 8 millions videos dataset [Abu-El-Haija et al., 2016] seem promising
for same kind of quantitative-qualitative upward gap and improvements as image in a near
future.

There is an interesting hypothesis to maybe understand why the text medium is so hard to
manipulate within statistical frameworks compared to the other ones although it has been the first
to be digitized with enormous ever-growing quantity data: close features in the other media are
more clearly dependent (two neighboring pixels in images and even voxels in videos are highly
dependent like consecutive sound samples are) and this dependence fades away with longer horizons
but unfortunately text features (words or even letters) have stronger and longer range interactions
that suggests to see them through grammar in spite of the scientifically obsolete and harmful but
widespread saying from Frederick Jelinek in 1985:

“Every time we fire a phonetician/linguist, the performance of our system goes up.”

Combining strong statistical tools and linguistics is probably the best alternative for future natural
language representations.

For all these different media (or information supports), a major research pattern can be analyzed:
most data contain redundant information so discarding stuttered information is useful in order
to manipulate the relevant infortmation only. For example, spatial data like images, have highly
dependent close pixels and thus intuitively small-sized convolution kernels seem appropriate to
decorrelate the redundant information. Another example is sequence data or smooth time series data
where neighboring data (with respect to the sequence or temporal axes) should also be decorrelated
thus 1D-convolutions [Zhang et al., 2015] or recurrence seem appropriate as much as recurrent neural
networks can [Murakami and Taguchi, 1991, Hochreiter and Schmidhuber, 1997] as described in Fig. 1.
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Figure 1: Several input/processing /output scenarios from standard neural networks to recursive ones. Red:
Input, Green: Processing, Blue: Output. From left to right: one (input) to one (output) vanilla neural network,
one to many like in image captioning (one image to many words in a sentence), many to one like in sentiment
analysis (many words in a sentence to a category of mood), and the (delayed or not) many to many case like
in langauage translation (many words of a sentence in one language to many words of a new sentence in a
different language). Diagrams taken from the pedagogical blog of Andrej Karpathy: http://karpathy.github.
i0/2015/05/21/rnn-effectiveness/
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This huge research effort allowed for large scale applications (both in terms of training size or
cardinality N and data size or dimensionality D and in the end the output size K). Meanwhile, image
and sound processing were increasingly developping methods using convolutions when LeCun et al.
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[1989b,a] applied those convolutions for image classification with both iterated compositions and
backpropagation which turned out to be also useful for sound and even text processing [LeCun and
Bengio, 1995]. For time series, there is still a scientific debate among the deep learning community
about whether recurrent or convolutional neural networks (which abreviate to RNN and CNN
respectively). Meanwhile the sequential nature of words enumeration in text is tackled as time series
but there is probably more hidden structure yet to get from grammar (as pioneering work from Socher
et al. [2011] pointed out since 2011).

These combined breakthroughs allowed ambitious real-world applications throughout the 1990s
and the 2000s. Today, new constibutions with improved engineering, structure, optimization and
regularization tools are still referring to early works with even homage (e. g. GoogLeNet by Szegedy
et al. [2015] referring to LeNet by LeCun et al. [1989b]). Image and Speech recognition is embedded
in many everyday products, even video recognition begins to have reliable industrial applications.
Natural language processing also gets impressive translation results' but there is still room for
improvements. For all these different media, it seems that the same phenomenon occurs: unleashing
clean dataset with thorough engineering effort astonishingly helps the scientific community to bring
back high quality prototypes and ultimately products. Indeed, if we measure the time delay between
a dataset release and available products and the best example is the AdaBoost implementation for
face detection with Haar features (MIT-CMU frontal faces dataset [Sung et al., 1998] and prize-wining
paper [Viola and Jones, 2001] less than 3 years after). In computer vision, the same phenomenon
occured with more and more available large cardinality datasets and thus ready-to-use products as
Fig. 2 shows.
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Figure 2: Images Datasets Explosion

3.2 Output Data and Functions Properties

Now we present a table of tips to adapt unconstrained vanilla neural networks functions to constrained
custom ones without the need of tediously maintaining the constraints (which is not recommended for
stochastic gradient descent optimization, the weapon of choice to face large scale datasets according
to the neural networks literature [LeCun et al., 1998]).

Ihttps://www.deepl.com/press.html
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Mathematically, the universal approximation theorem allows to parse a very large class of function
(more precisely we only need the Lebesgue-integrability [Hornik, 1991]):

x € RP and F(x) € RK

(12)

and Table 1 enumerates many kinds of functions and their corresponding implementations thanks to
the unconstrained original neural network function F.

Property Implementation
Positivity exp(F(x)) or F(x)? or even max(0, F(x))
Boundness between m and M | m + (M — m)o(F(x)) where o (z) = m which is
(m < M) related to the SoftMax function when K = 2
SoftMax(F (x)) where SoftMax(z); = —&2P()__ yohich is

Probability Vector (i.e. in
K-dimensional simplex)

ZK: exp(zy)
related to the multilogit model [Hastie e(t é\l., 2005] and the

logsumexp trick

Positivity and
(semi)-definiteness matrix

C(x) x C(x) " where C(x) is a lower triangular free matrix
with positive diagonal entries (even bounded for more
stability in practice) which is related to the Cholesky
decomposition [Golub and Van Loan, 2012]

1-Lipschitz function

Online power iteration on each matrix-vector product
inside the neural network that implements the function 7
which is described in the spectral normalization work

by Miyato et al. [2018]

Bijection (one-to-one
function)

Composition of layers such as

-
[X[Td]/ (S(X[;d]) X X[g + t(x[:d})) }
indexation of coordinates) where s and ¢ are regular neural
network functions. This technique also gives to the
log-determinant of the Jacobi matrix without too much

computation burden thanks to the original paper of Dinh
et al. [2017]

-
(with pythonic

Recursive Function

If ¢ is time and y an initialization: y;1 = G(y:, F(x¢))
which is pedagogically well presented by Karpathy [2015]
and Chakraborty et al. [2014] with improved LSTMs
variants by Hochreiter and Schmidhuber [1997] and
GRUs [Cho et al., 2014]

Table 1: Implementations for several types of Functions with respect to their inputs nature and functional

properties
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4 Optimal Transport

The optimal transport research field has proven to be crucial in redefining our modern world as
we know it, across a stunningly wide range of applications, since its French birth in the XVIIIth
century [Monge, 1781], with scientists from very different backgrounds and application areas such
as Rabin et al. [2012] in image processing, Courty et al. [2017] in near-general data domain adapta-
tion, Abouchar [1970] for airports management, decisive World War II military battle victories [Smolin-
ski, 1962], breakthrough innovation in modern economy [Galbraith, 2019] and flabbergasting futuristic
industrial revolutions such as semi-automatic objects generative design [Shu et al., 2019]. After
this long one-sentence celebration, we now briefly review the basics of such a prolific mathematical
offspring.

4.1 Formulations

In a data space X equipped with a metric ¢, we want to measure a distance between two piles of data
that is related to that metric. We are willingly using the vague word pile because thanks to the notion
of Dirac distibutions we have access to both smooth densities, empirical distributions and a wide
variety of distributions in general. Mathematically, we thus manipulate two distributions y and v
with associated two variables x ~ g and y ~ v both living in X'. On those distributions, we want to
compute the quantity W, (u, v) measuring how much different the piles u and v are. To that end, three
equivalent formulations exist for that same quantity:

Monge Formulation

We(p,v) = T%;r})f:v xn [ (%, T(x)) | (13)

where T, () denotes the push forward of u by transport map T. For real understanding, we refer
the reader looking for details to academic textbooks on Probability such as Random Measures,
Theory and Applications [Kallenberg, 2017].

Wasserstein Formulation

Wo(m,v) = inf Egy. : 14
(m,v) Lt Eoxy) sle(xy)] (14)

where I'(u, v) denotes the set of couplings 7 based on the two distributions p, v: the collection
of all probability measures on X x X with marginals # and v in order to maintain two coupling

properties:
vy € X, Exw [7(x y)] = v(y) (15)
and
Vx € X, By [v(x,y)] = p(x) (16)
Kantorovich-Rubinstein Formulation (for the L, euclidean distance cost: ¢(x,y) = ||x — y||2)
W(p,v) = sup By [C(x)] = By~ [C(y)] (17)

CeLip-1

where Lip-1 is the 1-Lipschitz functions set (from X C RP to R). More general formulas exist in
Real analysis and Probability by Dudley [2018], but changing the euclidean distance cost is possible
up to how difficult redefining the Lipschitz property of C is.

As a scientist apprentice, one can notice that for producing research work, it seems that the
Monge formulation is more amenable to intuition, the Wasserstein formulation is more suitable
for probabilistic and geometric perspectives and the Kantorovich-Rubinstein formulation is more
convenient for devising algorithms thanks the decoupling of # and v in the formulas which makes
computations easier (simple expectations that a usual Monte Carlo estimation can handle).

12



4.2 Algorithms

Since the middle of the XXth century, three major algorithmical tools emerged:
1. Hungarian Discrete Method [Kuhn, 1955]
2. Entropy-Regularized Sinkhorn Fixed-Point Method [Cuturi, 2013, Genevay, 2019]
3. Wasserstein Generative Adversarial Networks [Goodfellow, 2016]

but we are well aware that with a certain amount of pragmatism it is beyond the scope of this humble
state of the art to present the great mathematical achievements in optimal transport. Daring to write
a summary of such a huge mathematical and on-going research field is unsettling and we refer the
reader to three great references for best and rather exhaustive optimal transport overview: (i) Optimal
Transport for Applied Mathematicians by Santambrogio [2015] on the general scientific culture side, (ii)
Computational Optimal Transport by Peyré et al. [2019] on the statistical and programming side, (iii)
Optimal Transport: Old and New by Villani [2008] on the probabilistic and theoretical side.

Historically, Kuhn [1955] found a cubic complexity algorithm to solve an optimal transport in the
discrete case which was internationally widespread as the so-called Hungarian Method. Linear cost
optimization of one-to-one assignments between two sets of elements is reccuring in many real-world
applications as briefly enumerated above. Indeed, once a pairwise assignment cost matrix is given,
minimizing the associated cost sum with respect to the best possible assignment map boils down to the
ticking of one matrix entry per row and per column (with some additional dummy entries for coping
with the rectangular matrix case i.e. different cardinalities for the two sets at hand). Beyond this
seminal successful attempt to cast optimal transport as a linear problem, some other works pushed the
analysis further with network flows [Ahuja et al., 1989], with graph theory angle [Goldberg and Tarjan,
1989], then Dynamic Programming mixed with fluid mechanics reasoning came in with Benamou
and Brenier [2000] for improved computational speed. Special discrete-continuous distributions
cases were also efficiently tackled by Mérigot [2011] with some exceedingly fast convergence thanks
to Lévy [2015]. First in industrial logistics, these approaches were used in a surprisingly wide range of
applications from e. g. worker to work assignments, airplane to airport assignments, to communication
protocol load balancing systems etc.

Recently, Cuturi [2013] revisited entropy regularized transport to efficiently solve almost the
same optimal transport problem with the Sinkhorn iterative fixed-point-type algorithm, which is
especially handy when polynomial complexity is not realistic in large scale settings. The idea is that
they are willing to trade some approximated optimal transport due to transport entropic regularization
for realistic speed and doable computations. Surprisingly, even exploiting the entropy-regularized
properties of the Sinkhorn (and thus non-optimal) transport itself has value in many applications
such as robust finance [De March, 2018], ranking [Vert], photo album summarization [Liu et al.,
2020]... This is explainable because traditionally, regularizations schemes are meant to make numerical
and stability problems vanish. That fixed-point Sinkhorn theorem gives extremely fast convergence
rate of transport entropy regularized over Wasserstein distances computations: less than a dozen of
iterations are enough in practice. This approach on top of dramatic computational accelerations makes
it indispensable both for theoretical analysis and for many real-world applications. In spite of diligent
progress for Wasserstein Generative Adversarial Networks (as we will describe later), the work
accomplished by Genevay [2019] still presents Sinkhorn-based techniques as a great mathematical
and numerical alternative for efficient optimal-transport-related solutions in machine learning.

In order to imitate high dimensional data, the principle of the milestone work of Goodfellow
et al. [2014] about Generative Adversarial Networks (GAN) is prototypically new for a fascinating
worldwide series of research papers. As illustrated in Fig. 3, from a pseudo-random generator, we can
sample some low dimensional noise that is transformed thanks to a variable generator function to get
generated data within the original data space. The role of the critic function is to estimate a divergence
between the real data and the generated data distributions and the generator’s role is to minimize
it. The most common metaphor for this mainstream press acclaimed technique is considering the
generator as a forger trying to fool the detective embodied by the critic within an adversarial objective.
The detective wants to distinguish generated and real data and the forger wants to produce generated
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data that are indistinguishable when compared to real data. More mathematically, it turns out that
there is indeed a link between that min-max optimization and a Nash equilibrium as emphasized by
Fedus et al. [2017].

+ Generated Data
o
Noise Generator ‘
/ hg N Critic
/
o 1
. o¥ o
® o
Real Data
R4 RP
Code Space Data Space

Figure 3: GAN Principle: Imitating Data thanks to some Artificial Low Dimensional Noise in Purple from a
Code Space (R?) transformed thanks to a Generator function (or forger) into Generated Data in Red living in
the Data Space ((RP)) so that they are supposed to be close to the Real Data in Blue thanks to the Critic function
(or detective) — Adapted from https://optimaltransport.github.io

Following the seminal Generative Adversarial Networks (GANs) work of Goodfellow et al.
[2014], Arjovsky et al. [2017] used the Kantorovich-Rubinstein formulation in order to imitate data
extending GAN from Jensen-Shannon divergence minimization to Wassertein distance minimization
between generated and real data distributions which paves the way for revisiting optimal transport in
the context of unsupervised learning. Answering the high research expectations for GANs, the recent
contribution of Miyato et al. [2018] called spectral normalization had a tremendous impact. Indeed,
revisiting the power iteration numerical recipe [Press et al., 2007] at each linear or convolutional steps
to elegantly enforces the Lipschitz property required by the Kantorovich-Rubinstein duality allows
variation constraints withtout unstable stochastic gradient projection techniques beyond Wasserstein
distances and optimal transport. Until the spectral normalization technique, neural networks had
a tendency to implement function that are not regular and enforcing the Lipschitz property (i. e.
constraining the variations of the functions implemented this way) gives a beneficial regularization
effect beyond Wasserstein distance estimation.

This spectral normalization technique gave so much optimization stability that facing unheard-of
large scale settings is made possible and provides the extraordinary images imitation results of the
BigGAN approach [Brock et al., 2019]. This engineering achievement is also convincing thanks the
already-mastered residual convolutional neural networks [He et al., 2016] ResNet tool coming from the
supervised image classification research. As a matter of fact, it is fair to say that ResNet [He et al., 2016]
gave the fascinating ability to neural networks of handling recursively raw, moderately pre-processed
and highly pre-processed data at each layer by short-cutting the traditional successive-layers structure
thanks to additional cross-layer connections. All combined, it made BigGAN [Brock et al., 2019]
impressive rendering results possible, neatly fighting against the curse of dimensionality effect on the
learned parameters side confronted with exceedlingly large scale unsupervised conditions for both
data cardinality N (number of images in the dataset) and dimensionality D (number of pixels for the
image high resolution) under unsupervised conditions.
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5 Representations

Knowing how to represent data is understanding data and the underlying structure beneath it (and
vice versa). As is, data has in general too much dimensionality to be plotted (D > 3) and finding a
useful projections seems to interleave regular dimensionality reduction tehniques and clustering (i. e.
the task of building groups as we will see later).

Since 2012, several researchers identified what large scale settings for computations and memory
meant not only for applied mathematics but also for the worldwide economy describing it at the Big
Data era: Among them Zikoupoulos and Eaton [2016], Peters [2012], Jordan [2013]. Consider N, the
number of elements of a database (the cardinality), D the size of each element (the dimensionality),
then we observe two training conditions or regimes for machine learning algorithms:

Big data regime ¥ >> 1 Statistical theorems behave nicely but software programming was difficult
before data storage and computations speed dramatically improved (even on the software side
for parallelization)

Small data regime N < 1or N ~ D As we will see, the curse of dimensionality make things very

difficult in terms of statistics but computations are easy.

In practice, software and hardware issues of the big data regime have been solved in the 2000s
and the beginning 2010s at an industry-quality level. Domain specific and statistical expertise are
still required for small data regime. Indeed with images for example, hierarchical convolutions
organized layers in neural networks has a decorrelating effect which reduces the impact of the huge
dimensionality of data: intermediate results (called feature maps) are still very big on the first layers
but the number of parameters has been substantially decreased thanks to the small-sized convolution
kernels. For other domains, applying Convolutional Neural Networks (CNN) did work but mastery
of each domain must not be ignored. In other words, injecting enough knowledge into an automatic
system is basically diminishing the dimensionality (i. e. removing redundancy with respect to the
task at hand) which is good news towards coping with the curse of dimensionality: this transforms a
difficult small data regime into an easier big data regime.

5.1 Big data and neural networks

We previouly established that a convincing decrease of dimensionality D thanks to the appropriate
representation tools is key for good empirical results in machine learning. Now it is time to explain
how to optimize an objective function under large cardinality conditions. Since the 1950s, some early
work mixing statistics and optimization, Robbins and Monro [1951] allowed large cardinality training
dataset thanks to stochastic optimization. One interesting aspect of the Robbins-Monro theorem is
that the objective (nor the full-gradient) does not need to be evaluated directly anymore but only
a biased-free estimate of its gradient with respect to the learned parameters. In the end, the large
scale constraint is relieved because only randomly picked mini-batches of data are needed instead
of the whole dataset during the optimization. This early mathematical finding paved the way for
contemporary large scale learning fulfilled ambitions [Bonnans et al., 2003] beyond deep learning.
Several scientific avenues have been taken with sometimes sophisticated algorithmical tools [Bertsekas,
1997] with new programming context (e.g. distributed systems [Hendrikx et al., 2019] or limited
memory systems [Defazio et al., 2014]).

In a nutshell, the Robbins-Monro theorem allows to manipulate an idealized loss function (over all
the data of the universe) without the need to compute its values nor its gradients with respect to its
parameters as long as one can provide a biased-free estimator of the loss function gradient needed for
the stochastic gradient descent optimization scheme. Surprisingly, it turns out that artificial neural
networks actually look like biological neural networks for learning (but much less for its structure and
running behavior inspite of 1950s predictions). Indeed, stochastic gradient descent follows a Hebbian
rule?:

6t+1 = Bt - (thf (18)

2Donald O. Hebb was an influential neuro-psychologist from the 1950s
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where ¢ is an iteration index, 8 the parameters that are learned, « is a learning rate (often constant)
and finally f; is an incremental progress computed thanks to a measured error. Numerically, {; is the
gradient of an objective £ to minimize:

fi = VoL(6) (19)

which can be approximated by a biased-free estimate of VL (6;) according to the Robbins-Monro
theorem. For a general objective to minimize such as £(07) = Exy)Nature (£(¥, F(x))) the hebbian

rule has a replaced stochastic gradient f, instead of the “true” one f;:

0r11 = 0 — x1 8y (20)
where
. 1 &
f; = B Y Vo (U(yi, F(xi,))) (21)
b=1

and i, ~ Un(1, N) is an uniform index parsing the N-cardinality training dataset in mini-batches of
size B.

It is noteworthy to recall that there is a simple case where the best learning rate is given in closed
form: the online estimation of a mean random multivariable which is related to the least squares
problem:

Pipg =Wt (Xt+1— 1) (22)

1
t+1
From a practitioner point of view, large cardinality problems have been solved both on the soft-
ware/hardware side and on the optimization side. The dimensionality issues still remain and is in

essence more specific to each application we tackle.

5.2 The Curse of Dimensionality

Enhancing data structure in the data representation is an efficient way to cope with the curse of di-
mensionality issue that we focus on in this section. As said above, in images and speech, convolutions
provided enormous improvements in terms of accuracy for the given task. Word ordering structure
is today considered as standard since the rise of embeddings techniques with word2vec [Mikolov
et al., 2013] and variants even with the recent BERT method. The fundamental idea is to transform
observed occurrences of words ordering on large corpora into a regression problem providing relevant
words representations into real-valued vectors. The situation is much more difficult in genomics
despite worldwide sincere attention [Barillot et al., 2012]. Indeed 1 human is DNA-represented by
D =~ 10'? nucleotides and the worldwide population is N ~ 10° which corresponds to a small data
regime once again. Even in diagnostics problem healthy v. s. ill detection or classification problem, in
theory a balanced and worldwide-sized annotated DNA-dataset is not enough for classification nor
interpretation which is quiet an embarassing (theoretical) scenario. We did not yet leverage enough
desirable and yet unknown DNA structural information among those nucleotides to get an easier big
data regime.

Now we know that high cardinality is not a problem anymore if dimensionality is not too high
keeping the problem under the big data regime. In small data regime when dimensionlity is too high,
devising algorithms is difficult because of the well-known Curse of Dimensionality® that we mentioned
earlier. To explain that phenomenon dubbed the Curse of Dimensionality, a classic example considers
the volume of a sphere of unit radius in dimension D which follows

(k!)(4m)

k k
if D =2kiseven,or V(D) = 2(2k 1! if D =2k+1isodd (23)

T

QI

3The keyphrase Curse of Dimensionality was first mentioned by Bellman [1957] to describe the need of efficient algorithmic
tools like Dynamic Programming [Dasgupta et al., 2008] to efficiently explore huge discrete solutions spaces, historically
later it also concerned many kinds of large data spaces

V(D)
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Figure 4: Volume of an euclidean sphere of unit radius in dimension D

In Fig 4, first we can see that volume V(D) reaches its maximum for D = 5 and right after, that
same volume V(D) dramatically decreases towards 0 as D grows (limp_,« V(D) = 0) which is not
intuitive and rather deceiving because of how we experience spatial neighborhood notions in our
2D and 3D living environment as human beings (we would expect that volume to grow indefinitely
as it does for D = 1,2,3,4). For example, in low dimensionality regimes (D = 1,2 or 3), if a point
lies close to the origin inside an unit ball neighborhood, then the volume to exhaustively parse for
finding it is reasonably big (V (D) ~ 2,3.14 or 4.18 respectively). But for high dimensionality regimes
(e.g. D = 30), the corresponding volume to parse gets extremely small (V (D) == 2 x 10~°) which
is unsettling: we would think that looking for a point inside a higher dimensional sphere would
be larger but this is not true. In the end, this means that rudimentary notions like distances or
even similarities behave unexpectedly in such high dimensionality data regimes. Another pedagical
example considers the ratio R(D) between a 0.9-radius and 1-radius balls’ volumes (R(D) = 0.9P).
In Fig. 5, that R(D) ratio also exhibits an embarassing phenomenon with respect to our intuition: as
the dimensionality D increases, the volume ratio R(D) goes to zero (limp_,. V(D) = 0) which means
that in high dimensionality regimes the orange 0.1-peel occupies almost all the entire orange volume in
layman’s terms.

Volume

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Dimensionality

Figure 5: 0.1-peel ratio R(D)f or an euclidean sphere of unit radius in dimension D
For pedagogical reasons, we may present a metaphor that we dubbed the “crinkled paper in a

room”. Indeed, in general, real data distribution seem to behave like a crinkled sheet of paper with
low intrinsic manifold dimensionality (say d = 2) inside of a large space of dimensionality D (say a
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d = 2 crinkled sheet of paper living in a room of D = 3 dimensions to help our 3D-living creatures
intuition). In this metaphor, revealing the data structure and focusing on the independent variables
ruling the data boils down to how we iron or un-crinkle that sheet of paper to explicitly have access to
the real degrees of freedom parsing the data.

Interestingly, following this metaphor helps us understand than the GAN approach is doing the
opposite: starting from a low dimensional uniform law (the ironed sheet of paper) transformed by the
generator into a higher dimensional and much more sophisticated law. GAN optimization is basically
learning how to un-iron or crinkle a clean sheet of paper into something close to the real data manifold.

Unfortunately, in terms of measures theories, neither the Riemann nor Lebesgue measures allocate
weight to that sheet of paper (crinkled or not, it is respectively not defined and zero) which may lead
to explore new theoretical research avenues and maybe studying other probability foundations like
maybe not yet sufficiently explored in machine learning based on the Hausdorff measure [Abbott and
Rogers, 1999] or using probability freed from measure theory like the acclaimed attempt of Breiman
[1992]. Another way to cope with this difficulties is to abandon the notion of probability distributions
to embrace energy-based models as initiated by LeCun et al. [2006] which require less assumptions to
model data and allows to generalize a distribution into an energy (through a neg-exponentiation from
an energy analogy from Physics but without the constraint of having a unit measure over space).

On the kernel-based techniques [Shawe-Taylor et al., 2004] side during the 1990s and 2000s, the
dimensionality problems disappear because once a kernel similarity matrix is built, one does almost
not need the data anymore to operate analysis (with supervised kernel-based support vector machines
or unsupervised spectral clustering). With kernels, dimensionality problems are avoided thanks
to the kernel similarity matrix. All dimensionality-wise considerations are relegated to the crucial
kernel definition. Unfortunately, such techniques are limited due to the inherent quadratic memory
complexity of such pairwise structures implied by the similarity matrix.

Meanwhile, on the Model-based side, naive approaches do not succeed to achieve good results
because of that high dimensionality: they ultimately loose their specific model selection capabilities
because of over-parametrization to match that high data dimensionality. Indeed, in reasonable
dimensionality conditions, the main advantage of such techniques is their ease for probabilistic
interpretation and model selection. Over-parametrization (or over-fitting) can be seen as a data
starvation phenomenon: a large number of parameters to fit would require a huge amount of data
to get reliable estimations which in practice leads to poor performance. We see that once again, the
interesting factor is the ratio & of cardinality N over D and not one of them without considering the
other one.

In the context clustering of large scale dimensionality, parcimonious and cluster-wise representa-
tions [Bouveyron and Brunet-Saumard, 2014] circumvent these high dimensionality problems and
still keep the appealing probabilistic properties of model-based clustering without sacrificing accu-
racy. One can remark that in the supervised classification literature, sparsity (and even structured
sparsity [Jenatton, 2011]) also did cope with dimensionality problems that are similar in essence.

Model-based clustering algorithms are popular because they are renowned for their probabilistic
foundations and their flexibility [Duda et al., 2012]. Indeed, even for non-statisticians, the possibility
to output meaningful probabilities is intuitive and principled. The main drawback of mixture-based
and model-based methods for clustering is the lack of richness (in Kleinberg’s sense see [Kleinberg,
2015] but we will come back on it later) due to necessary distribution assumptions that may not
be necessarily true for real data which justifies our attempt to alleviate this limitation thanks to the
functional expressivity of neural networks.

One fundamental machine learning hypothesis is recurring in the literature [Murphy, 2012, Duda
et al., 2012, Bishop, 2006]: real data live in a low-dimensional (of dimension D) manifold in a much
higher dimensional space (of dimension D and d < D). A classic pedagogical example consists
of the independent and uniform sampling of each pixel of an image: there is no realistic chance to
produce a convincing photograph! This means that even sophisticated mathematical object such as
photographs lie on a manifold of lower intrinsic dimensionality than the number of pixels multiplied
by the number of channels. In a reverse fasion, this has been confirmed by the DCGAN work of
Radford et al. [2015] that is able to generate D = 3 x 256 x 256 ~ 2 x 10° convincing DCGAN

18



images from a random uniform variable made of d = 100 independent coordinates). Thanks to
this low-manifold-dimensionality hypothesis for data in mind, it is reasonable to investigate some
dimensionality reduction techniques.

5.3 Dimensionality Reduction

At the beginning of the XXth century, Principal Component Analysis (PCA) was invented [Pearson,
1901]. This technique finds an optimal linear (or affine) projection with respect to compression/de-
compression quadratic reconstruction error. This algorithm gave birth to two more recent ones: (i) its
kernelized extension [Scholkopf et al., 1998] (euclidean distances can be expressed with dot products
that are in turn replaced by kernel evaluations in a Reproducing Kernel Hilbert Space RKHS following
the well-known kernel trick) and (ii) auto-encoders [Kramer, 1991, Bourlard and Kamp, 1988, Vincent
et al., 2010] which replaces compression and decompression by one neural network each.

e,

Figure 6: “Two Moons” Toy Dataset
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Figure 7: Two Moons Projection through PCA into 1D

Fig. 7, 8 and 9 show PCA, (Gaussian) kernel-PCA and AE dealing with non-linearly-structured
yet simple 2D distributions shown in Fig. 6. It turns out that (up to the Gaussian parameter of our
kernel-PCA), the non-linearity improvements of PCA in two different variants namely kernel-PCA
and AE does help ironing the crinkled distribution of interest (to follow our metaphor in section 5.2).

Dimension reduction approaches such as principal components analysis (PCA) or even autoe-
encoders (AE) [Vincent et al., 2010] may help for clustering but, as is, are not designed with a
clustering mindset which causes poor results in practice. These global dimension reduction techniques
are pragmatic but ignore information which is discriminant for separating clusters. Indeed, clusters
are usually living in different sub-spaces between clusters if there exist. Back in the original data
space, there is no reason to find an easy-to-find common linear sub-space that is discriminant enough
to separate all the classes at the same time. For example, if clustering is taken into account while
reducing the dimensionality, then one solution could be to divide the reduced space into as many
zones as clusters such that they do not overlap while still reducing the dimensionality. Thus, we
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Figure 8: Two Moons Projection through kernel-PCA into 1D (with Gaussian Kernel)
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Figure 9: Two Moons Projection through an Auto-Encoder into 1D

avoid generic approaches because they cannot afford by themselves to capture these subtleties in the
data. One must combine dimensionality reduction and clustering. Clustering could be looked at as an
extremely simplified version of the data by just keeping the index of the cluster the data belong to.

The high dimensionality clustering literature [Bouveyron et al., 2007] tends to show that clustering
and dimensionality should be done a the same time (i.e. in an end-to-end fashion) and not sequentially.
Indeed, on the one hand, doing clustering first for huge dimensionality data is computationally
difficult for obvious reasons and also statistically difficult because of the curse of dimensionality. On the
other hand, doing dimensionality reduction first looses hidden cluster-wise information about data.
One major issue of this work is precisely trying to tackle this “chicken or egg” problem.

Vanilla Auto-encoders alone do not allow to specify a precise probabilistic structure for a low-
dimensional representation. This limits their combination with model-based clustering techniques.
Furthermore, optimizing an auto-encoder and a Gaussian mixture generally implies the use of a
trade-off hyper-parameter to combine these two objectives. This hyper-parameter is possibly hard to
tune as cross-validation is not an option in our unsupervised settings as no validation score can be
used by definition.

The problem of learning representations from data in an unsupervised manner is a long-standing
problem in machine learning [Bengio et al., 2013, LeCun et al., 2015]. Principal Components analysis
(PCA) and auto-encoders (AE) which can be seen as non-linear extension of PCA [Baldi and Hornik,
1989] have been used for representing faces [Turk and Pentland, 1991] or to produce a hierarchy of
features [Chan et al., 2015]. Other techniques have been used such as sparse coding [Mairal et al., 2008]
where the representation of one image is a linear combination of a few elements in a dictionary of
features. More recently Bojanowski and Joulin [2017] learned features unsupervisedly by a procedure
that consists in mapping a large collection of images to noise vectors through a deep convolutional
neural networks.

Clustering and dimensionality reduction are interleaved. The importance of finding a suitable
representation for unsupervised tasks was first highlighted by Chang [1983], who showed that
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embeddings based on principal component analysis were often unfit for clustering purposes so we
suggest the idea of learning both clustering and dimensionality at the same time in an end-to-end deep
learning fahsion. In a more model-based literature [Bouveyron et al., 2019], combining clustering and
dimensionality reduction simultaneously also proved more successful than separating dimensionality
reduction and clustering sequentially, which in turn, was already more successful than doing only
one of them for both results. This means that both deep learning and Bayesian literatures tend to
show a certain symbiosis between clustering and dimensionality reduction towards data analysis and
understanding.

In the context of linear embeddings (that offers dimensionality reduction), the main approach was
to combine linear discriminant analysis with the k-Means (k-Means) algorithm (DisKMeans) [De la
Torre and Kanade, 2006] or more generally a Gaussian Mixture Model (Fisher-EM) [Bouveyron and
Brunet, 2012]. Much less research is available in relation to non-linear embeddings. Archambeau and
Verleysen [2005] however proposed to use manifold learning in combination with GMM. Combining
clustering with representation learning has been done with deep learning techniques in the past. An
early attempt was explored by Trigeorgis et al. [2014] who used a deep semi-non-negative-matrix-
factorization (NMF) model to specifically factorize the input into multiple stacking factors which are
initialized and updated layer by layer with k-Means on the last layer.

Neural networks have proven successful in the context of supervised classification and even
regression [Goodfellow et al., 2016]. Indeed, their ability to transform data such that the frontiers
between classes are hyperplanes in the classification setting have made them very popular. In spite of
the non-convexity of their optimization scheme, today, they are superior to convex machineries such
as Support Vector Machines even for kernelized ones in almost every domain in Computer Vision
and sound processing for example. The idea of having learned features has already been tackled
by Chen [2015] used Deep Belief Networks together with maximum-margin clustering. Wang et al.
[2016] jointly optimized a sparse coding objective and a clustering loss. Eventually, all these recent
approaches have been empirically outperformed by auto-encoders’ style machineries.

When it comes to compressing data while limiting loss of reconstruction information, auto-
encoders have proved efficient [Vincent et al., 2010]. Briefly, an auto-encoder is a neural network made
of two parts: (i) the encoder maps the data in a low-dimension space, (ii) the decoder maps them back to
the original space. An auto-encoder is trained to reconstruct the data in the original space (usually in
a least squares fashion but it could be any differentiable metric). At the end, if the reconstruction error
is low, then codes resulting from the encoder (also called “bottleneck”) have compressed data without
loosing too much information (because by construction, it is possible to rebuild data from codes
thanks to the decoder). The main assumption behind this technique is that the input data space of
high dimensionality contains structure that could be successfully embedded in a lower-dimensionality
manifold [Alain and Bengio, 2014, Sonoda and Murata, 2016] and the code space plays that embedding
role.

Generative Adversarial Networks (GAN) [Goodfellow et al., 2014] establish a min-max game
between a generator neural network on one side and a discriminator or critic neural network on the
other side in order to generate data (from random noise) that the critic cannot distinguish from the real
data. From that influential work emerged Adversarial Auto-Encoders (AAE) by Makhzani et al. [2015],
Wasserstein Auto-Encoders (WAE) by Tolstikhin et al. [2018] and Adversarially Learned Inference
(ALI) by Dumoulin et al. [2017]. In a few words, thrice are turning an auto-encoder into a generative
model. They are trained in different ways that put an arbitrary fixed prior distribution in the code
space. For the clustering chapter, we were initially inspired by these approaches with learned mixture
distribution instead of a fixed prior one.

6 Dissertation Outline

This thesis is illustrating the process of learning representations using neural networks and optimal
transport through three applications:

Clustering joint work with Pierre-Alexandre Mattei, Andrés Almansa and Charles Bouveyron It is about
unsupervisedly representing large-scale datasets in groups. This offers data tools to get a better
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intimate knowledge of the data with whereas the usual deep learning supervised classification
algorithms do not so easily unless tedious manual annotation is already paid for at least on
training data;

Unsupervised Feature Importance It consists in analyzing data at a coordinates level with a wide of
applications from pure data understanding to background/foreground image segmentation in
an unsupervised manner (the only remaining supervision being a pile of images containing the
same semantic class of content). In this work, we only propose an attempt to accomplish that
desirable goal and we provide a sound theoretical framework to do it;

Prediction with Uncertainty We insist on a better interpretation of supervisedly trained neural net-
works output in terms of uncertainty (especially for classification probabilities) towards a simple
yet efficient way to improve uncertainty estimation in such supervised learning scenarios. In
this contribution, sensitive applications can be a little more reliably envisioned when simple
industrial constraints or more complex health, security and even justice issues are involved.

At the end of this mauscript, we provide an appendix Generative Adversarial Networks Initialization
with Auto-Encoders. This is an heuristic for practical initialization of GAN training with tips revisiting
pre-training traditions from the 1990s but for contemporary machine learning tools.

In this state of the art chapter, we introduced the challenges related to thrice learning representations,
optimal transport and neural networks and the next chapters will be devoted to applications in
clustering, unsupervised feature importance extraction and supervised uncertainty estimation thanks
to the aforementioned tools. Some ongoing and future work are envisioned as a conclusion and
an appendix presents practical yet effective techniques for training GANs that we gathered from
experience.

6.1 Clustering

Clustering is one of the oldest unsupervised learning task [Jain, 2010]. Clustering [Duda et al., 2012] is
the task of making groups without the need of any manual annotations. Along with dimensionality
reduction, clustering is a desirable goal in data analysis, visualization and is often a preliminary step
in many algorithms for example in computer vision [Ponce and Forsyth, 2011] and natural language
processing [Goldberg, 2017]. Clustering and more generally data analysis does not only consist in
pre-processing steps, it is about helping us (as human beings) understanding the underlying structure
of data at hand.

Meanwhile, the computer vision field has recently witnessed major progress thanks to end-to-end
deep-learning systems since the seminal work of LeCun et al. [1990] and more recently of Krizhevsky
et al. [2012]. Most of the work however has been carried out in a supervised context. Our effort
leverages that wealth of existing research but in an unsupervised framework.

While optimal transport [Villani, 2008] have gained recent attention especially for generating
data (i.e. imitating data) in large scale settings (large both in terms of dataset cardinality N and
dimensionality D) with Generative Adversarial Networks (GAN) originated by Arjovsky et al. [2017]
and Sinkhorn divergences by Genevay [2019], we chose to ignore imitating capabilities and just use this
literature to algorithmically manipulate Wasserstein distances. For example, this considerable amount
of anterior work gives us a significant ease for optimization with helpful tools such as stochastic
gradient descent.

The purpose of this research is to build a linear-complexity algorithms that use non-linear embed-
dings into code spaces. Indeed, in the clustering literature, one can distinguish two kinds of clustering
algorithms with respect to their computation and memory complexity as function of the cardinality N.
On one side, we have linear algorithms such as k-Means (k-Means) and Gaussian Mixture Models
(GMM), which usually work directly on the data (i.e. without any medium such as embeddings and
transformed version of the raw data). On the other side, we also have quadratic and cubic algorithms
such as hierarchical clustering [Duda et al., 2012] and spectral clustering [Ng et al., 2001, Zelnik-Manor
and Perona, 2004, Von Luxburg, 2007] that use pairwise similarities to emphasize the latent clustering
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structure lying on the data. Now, we describe some statistical problems related to the clustering task,
and we will enumerate some famous clustering algorithms.

6.1.1 Clustering is an ill-posed problem

In general, there exists no clear, objective means of defining a “good clustering”. For a fixed number of
groups, Kleinberg [2015] presents three desirable properties for a given clustering algorithm, namely:

Scale Invariance Clustering output should not change if we multiply data by a constant

Richness or Cluster Shapes Invariance all separable cluster shapes should be possible (e. g. beyond
linear separation or ball-shaped clusters)

Consistency or Metric Invariance Clustering output should not change with respect to the choice of
distance

and he prooved the impossible existence of such an algorithm featuring all these three properties
simultaneously. In other words, his clustering impossibility theorem tells us that clustering is an
ill-posed problem. To add insult to injury, when data representation (or embedding) is involved, that
clustering task becomes all the more unclear because the underlying metric is allowed to change
arbitrarily. Indeed, the algorithm could expand the distance between points in the embedding
space that initially were located near to each another, which would break initial pairwise “distance”
constraints between the initial points and would inevitably violate the internal structure relating data.
Well aware about these difficulties, we decided to try anyway following our scientific predecessors as
clustering is useful in practice “as is”.

Taking advantage of the abundant optimal transport literature with probabilities (relaxing hard
clusters memberships definition to prefer probabilities) and also the neural networks literature (which
successfully handles arbitrary classes shapes in supervised contexts) make our efforts reasonable
towards a useful clustering algorithm for practioners. Let’s review the clustering axioms of Kleinberg
[2015]. First, once a metric is chosen, scale-invariance can be given for free thanks to the geometric
optimal transport interpretations i. e. all 1-Wasserstein distance would be multiplied like the data
accordingly without changing the optimization results. Second, Wasserstein distances operate on all
pairs of distributions to the contrary of the Kullback-Leibler divergence (which requires common
support which explains the use of infinite support distributions for the models like the Gaussian),
and thus no cluster shapes assumption is required, thus richness would be fulfilled by the functional
expressivity power provided by neural networks. Third, unfortunately, we would not be able to
achieve consistency because our models and algorithms strongly depend on the euclidean distance.
In fact, this third consistency property could be partially reached thanks to a generalized notion of
Wasserstein distance defined by the maximum Wasserstein distance when the metric parses a family of
distances (which makes the maximum of them still a distance) but this would require further scientific
work that we just skimmed in our unsupervised feature importance contribution.

Richness (i. e. free clusters shapes robustness) is obtained thanks to an intermediate space that we
call embedding space or code space which has lower dimensionality that the data space. If theoretical or
practical tools are given to navigate between these spaces, back and forth without loosing too much
information between data and codes thanks to encoder and decoder functions, then, model-based
distribution assumptions can be made on the code side which gives us the richness property in
return on the data side like in the work of Jiang et al. [2016]. Indeed, at the beginning of this thesis
(mid-2016), our first intuition was to put a mixture distribution (which is a typical model-based idea)
at the bottleneck of an auto-encoder (which is a typical deep learning unsupervised tool) with the
hope of gathering the best of these two universes: probabilistic ease for model selection coming from
model-based legacy on one side and rich representations with neural networks coming from deep
learning legacy on the other side.

Fig. 10 represents our strategy to alleviate dimensionality issues while simulataneously performing
clustering in a symbiotic fashion: this strategy proved successful in several papers that we briefly
present here. The first work we saw doing clustering in the code space of an auto-encoder is the one
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of Song et al. [2014] and Yang et al. [2016a]. The idea is to cope with large data space dimensionality
D > 1 thanks to an intermediate code space of lower dimensionality d < D. More precisely, Song
et al. [2014] considered a k-Means-regularized auto-encoder loss to get a code space that is more easily
clustered with k-Means namely their loss is the sum of the reconstruction and the k-Means residual
with a chosen hyper-parameter combining both. This philosophy is the one adopted for our own
approach but with a mixture of distributions Y'~_, 7ty x py of distributions p; weighted by proportions
7. We use a code space where clusters memberships (not data themselves but encoded versions of
them) are easily computed. In our preliminary experiments, we found that optimizing the k-Means
objective (online) when doing joint clustering and feature learning did not work well. We believe
this is because it creates high magnitude gradients for points that are far away from cluster centers.
Moreover there are sharp discontinuities at cluster boundaries whereas GMM diminishes that effect
thanks to low density/probability values for far points. This empirical conclusion seems to confirm
what Xie et al. [2015] also observed.

In a similar spirit, [Huang et al., 2014] have developped a locality-preserving and group-sparsity
constraints method to handle the clustering. Yang et al. [2016b] alternate between supervised classifica-
tion and feature learning through Convolutional neural networks (CNN) for images clustering. They
significantly improved the state-of-the-art but their method is limited by its intrinsically quadratic
complexity. In a similar spirit, Xie et al. [2015] embrace the t-SNE framework [Maaten and Hinton,
2008] in a clustering context through an auto-encoder in a non-model-based fashion. But doing t-SNE
first and then clustering is not a good idea because of the same loss of useful cluster-wise information
that occurred with PCA or auto-encoders.

All these works tend to show that simultaneous representation learning (by dimensionality reduc-
tion for example) and clustering actually do help each other. The reader will find an excellent review
in the work of Aljalbout et al. [2018].

6.1.2 Clustering in Large-Scale Cardinality Regimes

k-Means and Mixture Models have been studied in large scale cardinality settings [Bottou and Bengio,
1995, Cappé and Moulines, 2009] but these algorithms work thanks to strong distribution assumptions
(like cluster-wise Gaussian clusters shapes for GMM) directly in the original data space (i.e. without
embeddings). Agglomerative clustering methods greedily use a square similarity matrix to fusion
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data into clusters but the building of that N x N matrix is undoable for large cardinality N. Spectral
clustering [Zelnik-Manor and Perona, 2004] works with very mild (or no) cluster shapes assumptions
thanks to the kernel trick which gives access to high (and even infinite) dimensional representations
space at the cost of a square similarity matrix once again which inevitably blocks the way leading to
large cardinality datasets. Nevertheless, Choromanska et al. [2013] found a way to gracefuly alleviate
this problem through to the the Nystrom method that only demands the computations of only few
entries of that non-storable square similarity matrix thanks to a low-rank approximation (which is
justified by the low intrinsic manifold dimensionality hypothesis related to our 2D crinkled sheet of
paper in a 3D room metaphor). The present work is an attempt to provide a scalable method with the
mildest possible cluster shapes assumptions thanks to neural networks that already have these two
desirable properties in the supervised context: scalability and mild data assumptions.

The universal approximation theorems [Hanin and Sellke, 2017] allow neural networks to achieve
richness (in the sense of Kleinberg [2015]) in theory. But in practice, that richness requires the
estimation of a lot of parameters which is not reliable unless we have a large cardinality dataset during
training compared to the dimensionality as explained above in section 5. In this case, large cardinality
datasets are handled thanks to stochastic gradient optimization [Bach, 2016]. Indeed, considerable
research in supervised classification has been conducted based on these foundations during the last
decades but this work’s challenge is about extending this success to unsupervised classification (a. k. a.
clustering).

Generative approaches produce a model in the form of a synthetic data distribution that is
supposed to be close to the original data distribution with respect to a criterion such as the Kullback-
Leibler divergence (which is equivalent to maximizing the likelihood as explained by the Pattern
Recognition and Machine Learning textbook of Bishop [2006]) typically optimized with Expectation-
Maximization [Dempster et al., 1977]. Parameters and hyper-parameters are two different things:
parameters are optimized whereas hyper-parameters are imposed before optimization and can be
selected after optimization among a set of optimized models (i. e. model selection). One considerable
advantage of generative techniques over others is that hyper-parameter selection is made easy through
model selection thanks to principled mathematical (often Bayesian) foundations. Inddeed, building
such a model for clustering gives strong tools to evaluate generalization capabilities (with famous
criteria such as Akaike Information Criterion AIC, Bayesian Information Criterion BIC summarized
by Duda et al. [2012] or even Integrated Completed Likelihood ICL [Biernacki et al., 2000] etc.).

Discriminative methods for clustering were initially inherited from supervised classification these
last two or three decades. They are also extended to unsupervised classification (a. k. a. clustering).
In clustering these discriminative approaches would not build a model that would fit the data but
would rather separate the ouput classes or groups from each other (e.g. in a one-vs-one or one-vs-rest
manner) focusing on the boundaries of the groups rather than on the groups themselves. Spectral
Clustering [Von Luxburg, 2007] or DIFFRAC [Bach and Harchaoui, 2008] are two examples of such
techniques.

6.1.3 k-Means solves an (Optimal) Transport Problem

We take a close look at the k-Means loss for data (x;);—1.n into K groups:

1Y 2
min ; 1Xi = po3) 12 (24)

that we optimize over the centroids u = (p;)x=1..x and the assignments function ¢ from [1, N] C IN
to [1,K] C IN.

We studied k-Means which is probably both the oldest and most famous clustering algorithm [Jain,
2010] and we realized that it tries to efficiently solve an optimal transport problem. Put differently,
the global minimum of the k-Means loss satisfies the optimal transport problem of choosing a limited
K number centroids (¢, )x—1,. k such that the data empirical distribution p = % Zfil Jdpx; on the one
hand and the centroids weighted distribution g = YK | 7ty x 0y, on the other hand would be the
closest possible in the 2-Wasserstein sense associated to the squared euclidean distance, although
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usually, we use the 1-Wasserstein distance associated with the plain and simple euclidean distance:

WCz(p'q) = min IE(x,m)m’y [HX_mH%] (25)

Y€l (pg)

and for discrete distributions:

1 K
Wer(p,3) = 55 2 7k X By [[Ix = il 13] (26)
k=1

which is the k-Means loss and of course we have a link between the proportions 7t and the assignments
. _ #{o(i)=k|ie[1,N]}
Uc ﬂk — #
etal., 2019].
This interesting link between clustering and optimal transport encouraged us to investigate
further between these two scientific literatures: clustering and optimal transport. Generalizing this
observation to more sophisticated distributions thanks to Generative Adversarial Networks could

lead to having a fatter support distribution than just Diracs:

as for discrete distributions, optimal transport plans are degenerated [Peyré

K N
min ~ W()_ 7 x pk,% Y xdy,) (27)
k=1 i=1

U/(epk )k=1mK

where 0, parametrized the kth cluster generator distribution py (that was previously reduced to
a Dirac distribution located on the kth centroid ;). In practice, we can have latent variables z ~
N (04, 1;) and we define in y; ~ px by y = Gi(z) as we will develop later. That initial idea we had
is encouraging in a sense that it suggests an interesting mixing between optimal transport, neural
networks and model-based clustering.

We think that there is an opportunity here to mention that k-Means is not a regular special case of
Gaussian Mixture Models through Expectation Maximization (EM-GMM) although this false idea is
widespread. It is true that when neg-exponentiated, the k-Means looks like the negative likelihood of
a Gaussian mixture fitted on the data with identity (or equally proportional to) covariance matrices
and equal proportions but there is major difference: memberships probabilities in EM-GMM are not
degenerated but they are in k-Means. k-Means can still be seen as an example of the Expectation-
Maximization technique but these distinctions have been clearly made by Celeux and Govaert [1992].
The link between k-Means and optimal transport is stronger than the one between k-Means and
EM-GMM and also more fruitful in terms of open research.

6.2 Unsupervised Feature Importance

As suggested earlier when we analyzed the consequences of the impossibility theorem by Kleinberg
[2015], metric invariance is an interesting subject. To handle this difficulty related to the choice of
the metric, one can work with a set of metrics because we know that the metric defined by the upper
bound evaluation over a set of ditances is also a distance. To the best of our knowledge, this angle has
not been tackled by the research community to study unsupervised feature importance extraction.

In supervised learning, Breiman [2001] proposed routines based on permutation and mean decrease
in impurity but much less work has been done in the unsupervised context. This is probably due
to the fact two interleaved problems remain: metric learning, feature selection which makes our
task ill-posed. We actually suggest that it is worth trying to improve regular and generic euclidean
approaches.

6.3 Uncertain Predictions

In this chapter devoted to uncertainty in supervised learning, we borrow scientific items from Bayesian
and frequentist scientific communities. Indeed, we believe that mixing both scientific cultures is
beneficial in general and for uncertainty estimation in particular: probabilistic interpretations provided
by Bayesian formulations and function expressivity fitted to large scale data provided by the large
frequentist fauna of algorithms which is of course not limited to deep neural networks.
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6.3.1 Bayesian and Frequentist scientists in Statistical Learning

There is a so-called rivalry in automatic statistical learning between Bayesians on one side and
frequentists on the other side that is quiet disturbing when seen from a young scientific point of view.
Indeed, we can laughably notice that Bayesian scientists are allowed to use histograms of frequencies
and frequentist scientists are allowed to use the Bayes rule. This kind of debate is often sterile but it is
probably a characteristic of still young non-unified sciences with varying names accross trends. In this
section, we briefly describe the specific issues taken into account by these two commonly separated
communities.

The Bayesian framework [Barber, 2011] is characterized by its use of parametrized probability laws
which allows to benefit from interpretation ease (including uncertainty) when predicting information
of producing description about data. The preferred statistical tool is usually the so-called bayes
rule, hence the name of this scientific community. The choice of the modelled distributions carries
interpretation and knowledge that is elegantly injected into the trained systems.

In contrast, within the frequentist approach [Bishop, 2006], we assume that uncertainty is inherenty
present due to the randomness coming from repeatable experiments producing empirical observations.
Hence, many machine learning problems tackled with a frequentist point of view is a statistical
estimation problem based on observed data. If one could accept caricatures, then we would say that
Bayesian statistical learning is a principled probabilistic and thus interpretable framework (hence their
appealing reputation but at the cost of often wrong model assumptions) which offers extraordinary re-
search avenues such as model selection without extra data and meaningful probability interpretations
whereas frequentist statistical learning produce good-results-oriented black-boxes [Neal, 1995] with
impressive recognition rates resculpting our modern world.

Recently, in a Ph.D. thesis Gal [2016], dared the idea of taking advantage of both worlds in a
Bayesian deep learning approach (although the merit was certainly to revisit such a counter-intuitive
approach that in fact dates back to at least in the 1990s by Neal [1995] or even by Bishop [1994]). Today
in 2020, there is a still a controversial debate on this subject: Bayesian machine learning injects some
knowledge through a distribution prior (not always a Gaussian prior even if we can recognize this
is the best studied distribution and the most frequently used) for inputs and outputs of statistical
predictors. This guiding of the machine learning at both optimization and prediction steps assumes
some knowledge about input and output data but most of the time that knowledge is not existing
hence the debate. Frequentist neural networks with all their parameters and Bayesian statistics with
all their parametrized distributions might seem uneasy to coexist in the same unique machine learning
method.

6.3.2 Sources of Uncertainty

Beyond frequentist and Bayesian considerations, according to recent research work [Gal, 2016] (we
recommend the reader to read this Ph.D. thesis for details and comprehensive bibliography about
prediction with uncertainty), uncertainty can be broken down into several facets:

Extrapolation uncertainty The prediction could be wrong because test data do not come from the
same distribution as training data. Out from the training distribution, test data go against one
of the most fundamental machine learning hypothesis to make any system work. For example,
online self-adapting systems [Bertsekas et al., 1995] look like reinforcement learning systems
and deal with out of distribution data uncertainty purposefully. During training, prediction
systems never see anything but data coming from training data. Neural networks have the
deserved reputation of quickly over-fitting on training data empirical distribution (if used
carelessly) which is both a warning against both interpolation and extrapolation data prediction
in worst case scenarios as explained by ? partially avoided by regularization [Srivastava, 2013].
Overfitting is bad extrapolation in essence. Thus, neural networks are particularly prone to
extrapolation issues like extrapolation uncertainty.

Aleatoric uncertainty Some noise could have been introduced in training data (some wrong coordi-
nates, some wrong labels etc.). Well-studied statistical machineries like linear and kernel-based
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support vector machines [Andrew, 2001] proposed the notion of margin to cope with some part
of that uncertainty but it seems that linking that margin to probability estimation is still an open
research problem even with a logistic regression loss instead of a hyperplane in practice;

Epistemic uncertainty The initial machine learning problem might be ill-defined: many solutions
can solve the problem, so we do not know which one to choose objectively. For example, the
butterfly effect (in layman’s terms) is a source of epistemic uncertainty against meteorological
forecasts meaning that uncertainty is inherently related to the studied laws of physics as a
scientific standing point (see for example Epstein [1969]). Thus, the problem modeling could be
unsufficient which introduces randomness.

There exists more precise analysis for describing these interleaved sources of uncertainty and readers
may find more exhaustive research in the work of Kennedy and O’Hagan [2001]. But all these
phenomena boil down to how systems should and could handle the possible lack of confidence
tainting automatic predictions.
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