
Wasserstein Clustering

Warith HARCHAOUI

October 2020

Man Gave Names to All the Animals

Bob Dylan in Slow Train Coming, 1979

Abstract

Clustering is partitionning the data into groups. Deep approaches for clustering are promising
for extending the success of neural networks beyond the limits of supervised classification. In
this chapter, clustering is tackled at the crossroad of several literatures: auto-encoders, generative
adversarial networks (GANs) for optimal transport, statistical mixture models. Two criteria are
studied: (i) the first generatively minimizes the Wasserstein distance between data and cluster-
separated generated data inspired by the GANs success and (ii) the second discriminatively
maximizes over all partitions the Wasserstein distances between the associated groups.

These two mechanisms are compatible with model selection according to a Wasserstein criterion
measured on held-out validation data. Competitive results are achieved on benchmark datasets
such as images, sparse and dense data, with the benefits of selecting the number of groups which
promises interesting further research.

Keywords

Clustering, Neural Networks, Wasserstein Generative Adversarial Networks, Mixture Model, Deep
Generative Models, Optimal Transport, Discriminative Clustering, Generative Clustering

1

Contents

1 Introduction 3
1.1 Related Work . 3
1.2 Model Selection . 4
1.3 Reparametrization Trick for a Mixture . 4

2 Generative Wasserstein Clustering 5
2.1 Deep Generative Models for Clustering . 5
2.2 Concatenation Trick . 7
2.3 Algorithm . 9
2.4 Model Selection for GeWaC . 10
2.5 Collapsing Effects . 11

3 Discriminative Wasserstein Clustering 11
3.1 Wasserstein Distances between Clusters . 12
3.2 Unormalized and Normalized sum of inter-Cluster Wasserstein Distances 13

3.2.1 Sanity Checks . 13
3.2.2 One-vs-One and One-vs-Rest Strategies . 15

3.3 Estimating Wasserstein Distances with Deep Learning 16
3.4 Algorithm . 17
3.5 Model Selection for DiWaC . 19
3.6 Changing the Metric beyond the Euclidean Distance for DiWaC 19

4 Experiments 19
4.1 Implementation details and experimental setup . 19
4.2 Introductory Examples for Generative Wasserstein Clustering 21
4.3 Introductory Examples for Discriminative Wasserstein Clustering 22
4.4 Real Data Experiments . 22

5 Future Work and Conclusion 28

2

1 Introduction

In a new environment, the first thing a human being (even as a child) does is mentally grouping
the elements of the surroundings and putting names on those groups. The ambition of this work is
to tackle the problem of clustering within the deep learning framework. While the vast majority of
the model-based clustering approaches focused on the Kullback-Leibler divergence (closely related
to maximum likelihood up to an additional constant term [Bishop, 2006]), we investigate in this
chapter an attempt to operate with the Wasserstein distance in lieu of Kullback-Leibler divergence
for clustering with mixture distributions.

In the first part of this chapter, we take some generative ingredients coming from the machine
learning literature to build our clustering technique as chronologically, we got inspired by Genera-
tive Adversarial Networks (GAN) remarkable results [Goodfellow, 2016]. In the second part of
this chapter, on the contrary, we choose more discriminative ingredients while still using some of
the statistical and algorithmical tools empowered by the experience gained previously. Recently
and independently from us, we have seen that Mukherjee et al. [2019] successfully built a better
generative clustering work than us but our approach is slightly different: Jensen-Shanon divergence
from the original GAN [Goodfellow et al., 2014] whereas we used the Wasserstein distance in our
case thanks to the work of Arjovsky et al. [2017].

In the discriminative clustering context, Bouveyron and Brunet [2011] revisited an ancient
approach from Fisher [1936]: separating clusters with a maximum Kullback-Leibler divergence
inter-cluster hence the discriminative point of view. Likewise and with the same spirit, we propose
to maximally separate data into clusters which is exactly adopting a discriminative angle to
clustering instead of generating closest possible clusters to data which corresponds to a generative
angle. Here, we explore new ways to do clustering with inter-cluster Wasserstein distances
maximization moving away from the conventional literature by borrowing ideas from generative
model-based approaches and discriminative methods.

1.1 Related Work

Authors such as Flamary et al. [2018] actually did go down that appealing research road for
Wasserstein-distance-based discriminative clustering with simultaneous linear dimensionality
reduction. Indeed, Flamary et al. [2018] adapted the old latent discriminant analysis of Fisher
[1936] but with the Wasserstein distance instead of a sum of distances approach that is closer to
a Kullback-Leibler mindset while still being both discriminative and model-based. The choice of
divergence (even beyond Kullback-Leibler and Wasserstein) and the choice between generative
and discriminative approaches are scientifically intruiguing and produce different algorithms in
practice as far as clustering is concerned.

The ambition of this work is to tackle clustering within the deep learning framework because of
its large success in supervised learning that we want to inherit in unsupervised classification (a. k. a.
clustering). More precisely, our motivation does not come from the popularity of the so-called deep
learning approaches but is rather nurtured by the functional expressivity that neural networks and
the fact that the associated scientific community is profuse in free high-quality toolboxes, which is,
of course, impossible to distangle from the deep learning tremendous popularity.

To achieve these goals, we take advantage of the recent Wasserstein Generative Adversarial
Networks research to estimate these aforementioned generative and discriminative criteria. The
smoothness implied by the deep learning optimization gradual procedures made us think that
soft memberships probabilities should be prefered over discrete categorization output. Handling
the Wasserstein distance meant dealing with transport plans which are uneasy objects intuitively
in terms of software programming. Thanks to the Kantorovich-Rubinstein formulation, we end
up with uncoupled lossed for the distributions which is easier but at the price of an adversarial
min-max optimization for the generative case which is notoriously difficult to monitor in practice
(although much research attention simplified it). For the discriminative case, maximizing the
Wasserstein distance estimated by the Kantorovich-Runbinstein maximization duality is especially
suitable for optimization stability. Clearly, we do benefit from algorithmic tools from the adversarial
neural networks for the generative part of this work but we still do benefit from this tools for
the discriminative easier algorithm construction, especially for critics (or potential) lipchitzian
functions. Indeed, for the discriminative algorithm, we surprisingly avoid undergoing the difficulty
and instability of a min-max (adversarial) optimization with just an overall maximization instead.

At the very start of this thesis in 2016, in our preliminary experiments, a Gaussian mixture model
trained with Expectation-Maximization [Dempster et al., 1977] on codes coming from a vanilla

3

MLP1 auto-encoder without convolutions is able to reach above 80% of unsupervised clustering
accuracy on the famous digits MNIST images dataset2 directly on raw pixels. Encouraged by
this surprisingly good result, we pursue our efforts towards an attempt to take advantage of that
empirical fact in a sound framework.

While supervised classification has been a long-standing problem for many decades until
recently thanks to computational hardware dramatic improvements and a considerable research
effort towards statistical tools and algorithms, unsupervised classification (a. k. a. clustering) is
still a difficult area but taking advantage of the supervised findings proved efficient in terms of
research. In fact, although we can only confirm that clustering is an ill-posed problem as explained
earlier due to the Kleinberg’s impossibility theorem [Kleinberg, 2003], we still find it desirable with
the same issues that the supervised classification research had to solve in easier settings because
supervised classification has a clearer objective. Beyond ill-posed problems, the way we tackle
model-based clustering in this work has at least two issues, namely model selection and mixture
parametrization that we brielfy describe here before presenting two techniques, one generative
which we improved thanks into a discriminative one.

1.2 Model Selection

In supervised techniques, after training different models with some different hyper-parameters,
we can find th best set of hyper-parameters thanks to (cross-) validation: measuring the different
associated accuracy scores on a labeled held-out dataset. Unfortunately, this is not a solution in
our unsupervised clustering task where no labels exist (never: neither at training, nor validation
and of course not at testing stages). Nevertheless, we have two ways to circumvent this problem
[Bouveyron et al., 2019]:

with a held-out and unlabeled dataset our model-based techniques compare distributions within
a statistically meaningful quantity (divergence or distance minimization or maximization):
one representing the data and another one representing a fitted model. A natural way to select
some hyper-parameters sets among several trained models is to measure the same training
quantity and same model but with different data corresponding to the validation dataset.
In this work, we develop two techniques: DiWaC (which corresponds to a discriminative
approach) and GeWaC (which corresponds to a generative one) and these objectives measure
a model-data fitting Wasserstein score and allow us to measure a model-data fitting score on
unseen and held-out data. In supervised classification, the validation accuracy in measured
from the comparison between pre-annotated labels and predictions from a model optimized
with training data. In our unsupervised clustering case, we allow ourselves to loosely adapt
the held-out validation score expression because we simply measure some Wasserstein distances
between model distributions and validation empirical data distributions (without labels
otherwise this would not be realistic) to check under- and over-fitting phenomena;

withtout any other dataset than the initial training set a vast literature exists with Kullback-Leibler
divergences and Likelihood Maximization for selecting a good model among many [Schwarz
et al., 1978, Biernacki et al., 2000] using the number of model parameters following an Occam’s
razor for Bayesian Machine Learning to compensate for extra data validation but to the best of
our knowledge, we do not know non-likelihood-based techniques (here we use Wasserstein
distances instead).

We clearly chose the first approach with some held-out unlabeled data with our Wasserstein dis-
tances. Now we explore how we manipulate mixtures distributions thanks to the reparametrization
trick.

1.3 Reparametrization Trick for a Mixture

In order to handle distributions and more precisely being able to differentiate our objective func-
tions with respect to the parameters of these distributions for learning purposes, we adapt the
Reparametrization Trick from Kingma et al. [2015] first used in a variational context3. Indeed, we have
chosen a probabilistic framework from which probability distribution parameters are estimated.
Usually, in deep learning, first, the optimization process finds functional parameters for output
prediction thanks to the minimization (or maximization) of an objective funcion and the notion

1Multi-Layered Perceptron
2http://yann.lecun.com/exdb/mnist/
3see this scientific blog for details: https://gregorygundersen.com/blog/2018/04/29/reparameterization

4

https://gregorygundersen.com/blog/2018/04/29/reparameterization

of gradient gets easy under mild (sub)-differentiability conditions towards training optimization.
In our case, this is different: we do not optimize functional parameters for an output prediction
but we do find density parameters for a distribution which plays the role of the output prediction
in a probabilistic fashion. In less than a decade, the variational (see the surveys accomplished
by Kingma et al. [2019]) and optimal transport (see the book of Peyré et al. [2019]) literatures
in machine learning got much attention for that estimation scenario with probability distribu-
tion parameters. Instead of using some sophisticated mathematical tools for differentiating some
objective over some distribution parameters, many researchers used the Reparametrization Trick
thanks to Kingma et al. [2015]: transforming a known pseudo-random noise as an estimator of the
theoreretical random variable for optimization reasons which makes differentiation easier. Graves
[2016] gives a more comprehensive overview of the problem.

Indeed, Kingma et al. [2015] allow to directly specify a prior distribution over the code space of
a variational auto-encoder (VAE). Inference is done using a stochastic gradient variational bayesian
(SGVB) method, based on a reparametrization of the variational lower bound. In this work, we
will revisit and adapt this technique called the Reparametrization Trick for our distributions settings.
Deep generative models for clustering may be built using a mixture model as prior distribution.
This approach was recently explored by Dilokthanakul et al. [2016] and Jiang et al. [2016] who used
a Gaussian mixture prior.

In practice, the Reparametrization Trick consists in manipulating a random variable z coming
from a parametrized distribution (say Gaussian of mean a and covariance matrix B = CC> such
that z ∼ N (a, B)) thanks to a default random generator (here ε ∼ N (0, I)) that is transformed
through (z = a + Cε which simulates z ∼ N (a, B)) in order to get a differentiable version of the
random variable we needed. This technique can used in many different ways according to the
literature [Graves, 2016, Doersch, 2016, Blei et al., 2017].

2 Generative Wasserstein Clustering

Contemporary to a frenetic rythm of papers about Generative Adversarial Networks (GAN) since
their spectacular birth [Goodfellow et al., 2014], we admit we have been deeply influenced especially
by the Wasserstein-based approaches [Arjovsky et al., 2017] on the one hand and the French aura
associated to optimal transport since the acclaimed work of Villani [2008] on the other hand. Indeed,
Arjovsky et al. [2017] proposed a praiseworthy attempt to outline this particularly fast-growing
scientific landscape of GANs initiated by Goodfellow [2016] by insisting on the mathematical
quantities minimized between real and generated beyond the detective-forger metaphor describing
the revisited min-max adversarial optimization method (the forger being the generator function
and the detective being the discriminator or critic function).

At the same time, we wanted to accomplish some model-based clustering contributions thanks
to the statistical legacy summarized by Bouveyron and Brunet-Saumard [2014b] and later in
the commendable book of Bouveyron et al. [2019]. As clustering and data imitation are both
unsupervised tasks, we wondered since 2016, how was it possible to accomplish clustering with
data imitation tools such as GANs. Indeed, we investigate in this part a generative approach by
mimicking data that matches best real data with respect to the Wasserstein distance.

2.1 Deep Generative Models for Clustering

In the recent statistical learning literature, there is a significant trend towards better deep generative
models (DGM) based on different inference procedures: (i) likelihood, (ii) GANs.

First, the goal of the likelihood-based approach is to minimize the Kullback-Leibler divergence
between the original data distribution and the parametrized model data distribution (which is
equivalent to maximizing the likelihood Duda et al. [2012]). A recent example of that kind is the
work of Dinh et al. [2017] that had to introduce neural networks bijections in order to apply a
revisited change of variable formula on the likelihood mainly because the Kullback-Leibler divergence
requires same distribution supports and thus a bijection is almost mandatory to parse the entire
data space (including the vast empty data zones exactly like Gaussian mixture where each Gaussian
component support is the entire space).

Second, inverting the problem of accessing to the parametrized model data distribution is to
sample generated data from it which what Goodfellow et al. [2014] astutely proposed with GANs:
they minimize a divergence between real and generated data over the generator function parameters
implemented by a neural network thanks to a critic function that evaluates that divergence. Since
then, the Wasserstein distance [Gulrajani et al., 2017] through the Wasserstein GAN (WGAN) was

5

also proposed among other divergences summarized by a survey done by Goodfellow [2016] gives
a glimpse of what is offered by that thriving on-going scientific literature.

We aim at clustering a dataset of N points x1, ..., xi, ..., xN samples of the random variable x living
in a space X (say RD) into K homogeneous groups. We suppose there exists a latent code space Z
of a low dimension d (say d = 10 which is low compared to the original data dimensionality D:
d � D) such that there is a mapping D between Z to X connecting the random variable x in X
and its latent counterpart z in Z . We also assume that z follows a mixtureM of rather common
distributions as components (say Gaussian).

At the heart of our Generative Wasserstein Clustering (GeWaC) model, there is an auto-encoder
made of: (i) an encoder network E (parametrized by θE) and (ii) a decoder networkD (parametrized
by θD). That auto-encoder plays the role of a two-ways bridge between the data space and a code
(or latent) space which more akin to clustering alleviating the curse of dimensionality thanks to its
lower dimensionality (d instead of D).

Our model consists in saying that the data have been generated as follows. The clustering
variable c

c ∼ Cat(π) (1)

corresponds to a categorical random variable among K ≥ 2 clusters with prior proportions defined
in vector π (of K positive scalars which sums to 1). In this generative process, once the cluster k is
chosen, one can generate a code in Z which implies a mixture marginal for z:

z|c = k ∼ gk(.; ξk) z ∼
K

∑
k=1

πkgk(.; ξk) (2)

for the probability distributions (gk)
K
k=1 of each of the K components parametrized by ξk. Ultimately

a point in X is generated:

x|z ∼ δD(z) (3)

To translate into statistics the assumption that the code data lie extremely close to a low-dimensional
manifold, we should have written N (D(z), σ2Ip) instead of a Dirac δD(z) located on a decoded
data point D(z) and them further assume that σ → 0. In this context, the posterior probability
needed to cluster x is given by

P(c = k|x) = Ez∼p(z|x)[P(c = k|z)] (4)

Although any parametric density functions can be used for each mixture component gk, we restrict
ourselves in this work to densities allowing the use of the reparameterization trick [Kingma and
Welling, 2013, Kingma et al., 2015] which has been described above and has a central role in our
adversarial optimization as we will see later.

x

zc

”

µk, Σk

D(.)

π

σ2

Figure 1: Graphical Model for Data Generation

In the following, we will illustrate our methodology using a mixture of Gaussians in the code
space, i.e. we choose:

gk(.; ξk) = N (.; µk, Σk) (5)

(a Gaussian distribution with mean µk and covariance matrix Σk) where (πk)k=1,...,K, (µk)k=1,...,K,
and (Σk)k=1,...,K are the mixture parameters stored in θM. Note that, beyond the Gaussian mixture
prior that we consider here, our approach could be extended to any mixture of reparametrizable
distributions: one might for example consider a mixture of von Mises as the prior distribution, in
order to obtain interesting visualizations on a hyper-sphere, such as the ones of Davidson et al.
[2018]. Our graphical model displayed in Fig. 1 summarizes the chosen data generation modelling.

6

Figure 2: GeWaC Optimization Scheme

In order to fit our generative model, we generate a random variable D(z) to match x in terms
of Wasserstein distance in an adversarial fashion. We only have access to samples of x (through
the dataset) and D(z) (through a pseudo-random generator for z and the decoder or generator
D), which is a scenario where the WGANs proved successful as Fig. 2 summarizes the modeling
proposed here.

The posterior probability p(z|x) in Eq. (4) is hard to compute because of the nonlinearity of
the decoder. But, as in the work of Kingma and Welling [2013], we can approximate it using
an inference network q(z|x) built according to the encoder E . As emphasized by Kingma et al.
[2015], minimizing the Kullback-Leibler divergence between the true posterior and q(z|x) leads to
minimizing a penalized quadratic auto-encoder loss. Since σ→ 0, the dominating term in this loss
will precisely be the loss of a vanilla auto-encoder which is what we do in practice for the sake of
simplicity. Eventually, we can compute an approximation of P(c = k|x) by simply replacing the
true posterior by the approximation, which leads to the maximum-a-posteriori (MAP) rule in code
space:

P(c = k|x) ' πkgk(E(x); ξk)

∑K
k′=1 πk′gk′(E(x); ξk)

(6)

following the Bayes formula.
After several attempts, we came up with two fruitful strategies to make our system work: first,

the Concatenation Trick from Dumoulin et al. [2017] to ensure some consistency between code and
data spaces and second, the Reparametrization Trick from Kingma et al. [2015] to handle parametrized
mixture distributions described earlier.

2.2 Concatenation Trick

Our concatenation approach consists in operating a clustering that is consistent both in the embed-
ding code and input data spaces as described in Fig. 2:

• on the one hand, there is one space (called “code space”) with real encoded data (random
variable E(x)) next to a generated mixture distribution z ∼M;

• on the other hand, there is an other space (called “input space”) of real data at hand (random
variable x) coexisting with generated decoded signal D(z).

This mechanism allows our GAN technique to bring real and generated data distributions together.
We use a small dimensionality code space to benefit from the natural probabilistic interpretation of
mixture (e. g. Gaussian) for clustering in which each code mixture component corresponds to a
cluster. To guarantee a minimum level of consistency for our encoder/decoder system bridging
between our two aforementioned spaces, we use a technique that we dub the “concatenation trick”
proposed by Dumoulin et al. [2017]. This is necessary to make sure the encoder E and decoder D
functions are reciprocal mathematically almost everywhere on the data and code manifolds at hand
(see Donahue et al. [2016] for proof).

7

On the data side, if we only bring together the distributions of x and D(z), then this would not
have been enough because clustering would take place for E(x) and z. On the code side, if we only
bring together the distributions of E(x) and z, then this would not have been enough either because
true data x would not be even concerned anymore which would be equivalent to disconnecting the
codes from data. Concatenating data and codes solves these two problems. Fortunately, in other
settings (data imitation and compression), the concatenation trick formulation of Dumoulin et al.
[2017] nicely fits ours, thanks to the idea of bringing together the distributions of

• x̃ = a(x) =
[
x>, E(x)>

]> ∼ p̃ considered as real with x representing data;

• ỹ = b(z) =
[
D(z)>, z>

]> ∼ q̃ considered as generated with z sampled over a parametrized
mixture q =M(π, µ, Σ) = ∑K

k=1 πkN (µk, Σk).

by minimizing the Wasserstein distance between p̃ and q̃ over all parameters (mixture, encoder and
decoder). This way, we elegantly get the almost everywhere reciprocity between the encoder E and
decoder D on the data manifold adapting the work of Dumoulin et al. [2017] and also Donahue
et al. [2016].

The nature of the chosen GAN (Wasserstein GAN or other) is not crucial here as Arjovsky
et al. [2017] explained that the original GAN [Goodfellow et al., 2014] uses the Jensen-Shannon
divergence and WGAN uses the Wasserstein distance (which is a fortiori a divergence) but Dumoulin
et al. [2017] empirically show the improvement attributed to the concatenation trick vs. without
it in terms of image rendering. Interestingly, concatenation becomes a key element in our case to
make the whole system work because of our clustering goal (that Dumoulin et al. [2017] do not
have) to maintain data-code consistency through the encoder/decoder reciprocity. Intuitively, if
the concatenated variables in the previous bulletted list have similar distributions with respect to
the chosen GAN-specific divergence at hand, then the marginals are close too. Thus, our use of
the concatenation trick gets handy because it ensures that our pair of encoder/decoder functions
(E ,D) still behaves in a reciprocal fashion in spite of the mixed GAN and mixture framework in a
surprisingly stable manner in terms of optimization.

In fact, we first proposed a model without concatenation which meant the adversarial WGAN
optimization did not involved the encoder E as only the distribution of x and D(z) were being put
together: this was not principled especially because the clustering decision rule given in Eq. (6)
involves E which forced us to retrain a final post-processing with an adhoc autoencoder loss with
all parameters fixed except the ones of E for what seems to be an update with respect to the decoder
D. The contribution of Dumoulin et al. [2017] made all these considerations disappear in an easy
yet principled fashion.

Now, we minimize the Wasserstein distance between these two augmented data associated
distributions thanks to the Kantorovich-Rubinstein duality with a WGAN [Arjovsky et al., 2017,
Salimans et al., 2016, Gulrajani et al., 2017, Miyato et al., 2018] :

max
‖∇C‖≤1

Ex∼p
[
C
(
a(x)

)]
−Ez∼q

[
C
(
b(z)

)]
(7)

with C called the critic and implemented in practice by a neural network of parameters θC and
constrained as 1-Lipschitzian by a chosen method among weight-clipping [Arjovsky et al., 2017],
augmented Lagrangian [Gulrajani et al., 2017] or with more stability from online power itera-
tion [Miyato et al., 2018].

Assuming that the codes z come from a mixture of Gaussians with full covariance matrices
Σk ∈ Rd×d (d� D), for each k among the K components the corresponding variable zk follows:

yk = b(zk) =
[
D(Sk × e + µk)

>, (Sk × e + µk)
>
]>

(8)

where e ∼ N (0d, Id) and Sk is a Cholesky decomposition-inspired representation (with non-zeros
only in the lower-triangular part and strictly positive diagonal entries guaranteed by exponentials
first and then affine-transformed sigmoids for better eigenvalues amplitude control) of the full
covariance Σk = Sk × S>k such that the transformed random variable Sk × e + µk behaves as if it
comes from N (µk, Sk × S>k) = N (µk, Σ>k) in the spirit of the Reparametrization Trick [Kingma and
Welling, 2013, Kingma et al., 2015] for unconstrained optimization which is much easier and well
studied in stochastic gradient settings.

8

All the equations above meet in:

L(θE , θD , θM, θC) = Ex∼p

[
C
([

x>, E(x)>
]>)]

(9)

−
K

∑
k=1

πk ×Ee∼N (0,Id)
[C ([D(Sk × e

+µk)
>, (Sk × e + µk)

>
]>)]

and thus we optimize:

min
θE ,θD ,θM

max
θC
L(θE , θD , θM, θC) (10)

Indeed, maxθC L(θE , θD , θM, θC) corresponds to the Wasserstein distance between real data
[
x>, E(x)>

]>
and generated data

[
D(Sk × e + µk)

>, (Sk × e + µk)
>
]>

by the mixtureM and decoder D.
Originally Wasserstein GAN uses a simple fixed distribution (Gaussian or uniform) for the

random noise generator that is transformed by a neural network called the generator to fit the
data distribution in the Wasserstein sense. Here, we use a tunable mixture distribution instead
for clustering purposes. In a regular Wasserstein GAN, the fixed distribution has no parameter
taking part in the data generation mechanism. For that reason among other vocabulary reasons,
in our GeWaC algorithm, we call generator the union of the parametrized mixture distributionM
associated with the decoder neural network D (that brings the noise generated from the mixture
into fake data).

/////T»»> The mechanism that we dub concatenation trick proposed by Dumoulin et al. [2017]
naturally enforces the encoder and the decoder being reciprocal which can be proven in a way that
is very close to what Donahue et al. [2016] did for interested readers.

2.3 Algorithm

Our GeWaC algorithm can be decomposed in three successive steps:

1. Auto-Encoder Initialization
We train a classic auto-encoder (E ,D) (for an encoder E and decoder D):

(θ0
E , θ0
D) = arg min

θE ,θD
Ex∼p

(
‖D ◦ E(x)− x‖2

2

)
(11)

2. EM-based Gaussian mixture initialization
We fit a Gaussian mixture model

M
(

SoftMax(α), µ, (Sk × S>k)k=1,...,K

)
(12)

parametrized by θM = (αk, µk, Sk)k=1,...,K with the Expectation-Maximization algorithm [Demp-
ster et al., 1977] on the encoded data:

θ0
M = arg max

θM
Ex∼p

[
log

(
K

∑
k=1

πk ×N (µk, Sk × S>k)
(
E0(x)

))]
(13)

where the covariance matrices are parametrized by Σk = Sk × S>k to save tedious symmetry
and eigenvalues signs constraints and the proportions are parametrized by π = SoftMax(α)
for easily imposing 1-sum positive constraints on the proportions.

3. Critic Initialization
The critic function C role is to estimate the Wasserstein distance in order to get good gradient
estimation for the rest of the parameters. The previous steps intialized a generator process
that we should evaluate first before taking the gradient from it for the other parameters:

θ̂C = arg max
θC
L(θ0

E , θ0
D , θ0

M, θC) (14)

from Eq. (10) which is optimized thanks to the algorithm 1 calling the algorithm 2 but without
3.

9

4. Clustered Data Generation
The previous steps made this final step well initialized to optimize all the parameters thanks
to the algorithms 1 calling both 2 and 3:

(θ̂E , θ̂D , θ̂M) = arg min
θE ,θD ,θM

max
θC
L(θE , θD , θM, θC) (15)

Our GeWaC technique is “end-to-end trainable”. Steps 1, 2 and 3 are just reasonable initializa-
tions for step 4. Finally, we use the MAP rule in the code space (Bayes formula) in order to finally
cluster the data points which makes our simple approach after training time particularly fit for
clustering. For training this generative clustering, the optimization is orchestrated by algorithm
1 that calls Wasserstein distance estimation updates in iterations involving only critics neural
networks parameters which is described by algorithm 2 and minimizes the Wasserstein distance
estimates with respect to all parameters in algorithm 3 excluding the ones of the critics.

Algorithm 1 Optimization algorithm

1: while θE , θD and θM have not converged do
2: Sample a mini-batch of size B× K from the dataset xi,ki = 1, . . . , B k = 1, . . . , K
3: Compute the critic evaluation on the mini-batch of points and codes concatenation

ai,k ← C([x>i,k, E(xi,k)
>]>)

i = 1, . . . , B k = 1, . . . , K

4: for j = 1, . . . , Ncritic do
5: Wasserstein Estimation Step
6: end for
7: Wasserstein Minimization Step
8: end while

Algorithm 2 Wasserstein Estimation Step

1: Free critics gradients accumulators
2: Sample some B× K Gaussian noise codes from a pseudo-random generator

ei,k ∼ N (0, Id)

i = 1, . . . , B k = 1, . . . , K

3: Compute the critic evaluation on the mini-batch of decoded noise and its original version concate-
nation

bi,k ← C([D(Sk × e + µk)
>, (Sk × e + µk)

>]>)

i = 1, . . . , B k = 1, . . . , K

4: Compute

w← 1
B× K

B

∑
i=1

K

∑
k=1

ai,k −
K

∑
k=1

πk
1
B

B

∑
i=1

bi,k

5: Perform a gradient ascent step with w over θC

10

Algorithm 3 Wasserstein Minimization Step

1: Free encoder, decoder and mixture gradients accumulators
2: Sample some B× K Gaussian noise codes from a pseudo-random generator

ei,k ∼ N (0, Id)

i = 1, . . . , B k = 1, . . . , K

3: Compute the critic evaluation on the mini-batch of decoded noise and its original version concate-
nation

bi,k ← C([D(Sk × e + µk)
>, (Sk × e + µk)

>]>)

i = 1, . . . , B k = 1, . . . , K

4: Compute

w← 1
B× K

B

∑
i=1

K

∑
k=1

ai,k −
K

∑
k=1

πk
1
B

B

∑
i=1

bi,k

5: Perform a gradient descent step with w over (θE , θD, θM)

2.4 Model Selection for GeWaC

Once we get our trained data generator, we can measure the Wasserstein distance between gen-
erated data and some held-out validation data distributions (that we can sample from) to check
under/over-fitting and ultimately choose the number of classes or the architecture of neurons
and layers. There is one subtlety though: we must measure non-augmented data Wassertein
distance between non-augmented generated data and decoded mixture noise with recomputed
proportions from validation memberships probabilities means. Otherwise, the encoder-decoder
part of our systems will not be fairly compared: by removing the dimensionality augmentation, we
make possible the selection of the coding space dimensionality for example. Thus, algorithmically,
transforming our training procedure into a validation one consists in keeping algorithms 1 and 2
and leaving 3 and the augmentation parts.

We could consider our generative attempt as a natural extension of what the Expectation-
Maximization for the Gaussian mixture model algorithm does with the Kullback-Leibler diver-
gence but with stochastic gradient descent for the Wasserstein Distance. One difficulty appears
though from mixture distributions being problematic because of the partial discreteness of the
parameter space [Graves, 2016]. Specifically, mixture weights are particularly difficult to optimize.
Consequently, Dilokthanakul et al. [2016] assume that these weights are known beforehand, which
is not always the case in real-world problems. Jiang et al. [2016] propose a method for optimizing
these weights but does not provide empirical evidence on imbalanced data to support this scheme.
On our side, we did manage to get reasonable results but without completely being fair about
proportions: if we trust our careful initialization procedures and let proportions have very low
learning rate, then in practice, it is as if we freeze these proportions to a constant vector value
although we did not realize it at first while being deceived by apparently good results except when
initial proportions are not valid.

2.5 Collapsing Effects

Since its introduction of GANs, Goodfellow et al. [2014] warned the reader about what they called
the “Helvetica scenario” in which their generator is trained too often compared to the not-enough-
updated discriminator (a word that is translated by critic since Wassertein GANs [Arjovsky et al.,
2017]). Indeed, a generator can intuitively be good at generating data from a specific region of
space without being able to generalize to other space zones of data as the discriminator is fooled
when comparing good localized generated data compared to real data. This is a kind of a spatial
unsupervised over-fitting that is commonly defined in supervised learning. We end up with a
GAN that gets unable to generate the same variety of data as real data hence the collapsing effect
phenomenon name.

11

In our GeWaC technique, we observed a similar problem on the mixture side. Indeed, because of
the richness of potential functions expressed by neural networks, only one obviously non-clustering
mode of a mixture is enough to go through the decoder and parse the whole data manifold space. We
decided to give up this technique for that reason to prefer a discriminative approach that does not
need to produce data. In fact, it would be interesting to adapt what Mukherjee et al. [2019] recently
did but for the Wasserstein distance in order to see if their one-hot canonical latent augmentation
clustering encoding circumevents our generative problems.

3 Discriminative Wasserstein Clustering

In this section, we do clustering with neural networks thanks to a discriminative (instead of
generative) objective optimization: clusters distributions form mixture components like Fraley
and Raftery [2002], Bouveyron et al. [2019] did in the past. The discriminative aspect comes from
the fact that we are trying to optimally separate the data clusters in terms of Wasserstein distance
(benefiting from the recent rising of deep learning scientific techniques since Arjovsky et al. [2017],
Gulrajani et al. [2017], Miyato et al. [2018] but also Genevay [2019]) in a one-versus-rest fashion.

In a discriminative clustering, there is a fundamental limitation of Kullback-Leibler divergence
techniques: distributions must share same (infinite) support. Indeed, if density supports are not
the same, the Kullback-Leibler divergence is not defined (the logarithm of a zero probability being
−∞) so in these circumstances we can (must) use infinite support densities such as Gaussians or
related to artificially separate clusters that have mathematically same support which is not natural:
How come separated clusters share same model density supports? The unsatisfactory answer
consists in having low density separation zones between them. From that perspective, Wasserstein
distances are better because they are well-defined for non-equal density supports which constitutes
its main advantage thanks to its geometric properties. Clusters can now mathematically have
model densities without any overlap.

We propose an algorithm to perform unsupervised classification (a.k.a. clustering) within this
framework that we call “DiWaC” for Discriminative Wasserstein Clustering. Using the idea of
separating clusters as a discriminative objective function is not new (see for example Spectral
Clustering [Von Luxburg, 2007] or DIFFRAC [Bach and Harchaoui, 2008]) but the fact that we
handle distributions allows to enable both out-of-sample clustering and model selection at the
same time which makes our technique appealing even in large scale settings.

This work, to the best of our knowledge, is the first that maximizes Wasserstein distances
between clusters in a discriminative manner. The advantage of maximizing in our case is that
the Kantorovich-Rubinstein formulation makes it an overall maximization which is good news
in terms of programming and convergence ease compared to usual (and painful to monitor and
debug) min-max-type of optimization in Generative Adversarial Networks.

DiWaC is built at the crossroads of the auto-encoders, generative adversarial networks, optimal
transport and statistical mixture models literatures. We recall that an auto-encoder is a neural
network made up of two parts: on the one hand, an encoder that transforms the initial data into
a smaller code space followed by a decoder that sends the codes back to the initial data space
by trying to reconstruct them approximately in the sense of a quadratic loss (for a conventional
auto-encoder), a Kullback-Leibler divergence (for a variational auto-encoder [Kingma and Welling,
2013]) or the Wasserstein distance (for an adversarial auto-encoder [Tolstikhin et al., 2018]).

By presenting clustering in a discriminative fashion, we end up by defining a good data
partitionning in clusters as one whose components are as far apart as possible from each other.
Hence, mathematically, we maximize the weighted sum of Wasserstein’s distances between each
cluster components and all others. Thanks to Kantorovich’s formulation of Wasserstein’s distances,
the optimization of this criterion is a maximization (without minimization) on probabilities and
critics functions (also called potential in the optimal transport literature). Thus, we benefit from the
algorithmic tools coming from adversarial neural networks, especially for the critics Lipschitzian
functions [Miyato et al., 2018], without suffering from the hardship of an adversarial optimization
(as there is only maximization and no minimization any more).

3.1 Wasserstein Distances between Clusters

Concretely, clustering is the task of gathering the data x in K ≥ 2, K ∈N well separated groups but
here we relax the hard notion of group into soft memberships through:

τ(x) = [P(c = 1|x), . . . P(c = k|x), . . . , P(c = K|x)]> (16)

12

The number K of groups can be found through model selection which is explained later (section
3.5)

Through clustering we infer a function to describe hidden structure from unlabeled data. We
aim at clustering a dataset of N samples x1, ..., xi, ..., xN of the random variable x (of distribution
p) living in a space X (say X = RD) in K groups (or clusters). Usually, in the literature in Ma-
chine Learning (a fortiori including Deep Learning), scientists minimize probability divergences,
namely: Kullback-Leibler divergence which is equivalent to maximizing the likelihood in many
cases (with a wide range of tools from logistic regression i. e. cross-entropy loss for classification to
Expectation-Maximization for clustering), the Jensen-Shannon divergence in Generative Adversar-
ial Networks [Goodfellow et al., 2014] as remarked and extended to Wasserstein distance (which is
thus also a divergence with nicer and geometric properties) by Arjovsky et al. [2017]. The originality
of the current work in clustering settings where the grouping are unknown lies on the maximization
of divergences between groups instead of the usual minimization of divergences. This makes our
contribution close to Discriminative Latent Models [Bouveyron and Brunet-Saumard, 2014a], Fisher
Expectation Maximization [Bouveyron and Brunet, 2012] and Spectral Clustering [Von Luxburg,
2007] and we took some ideas from this vein of research (especially about how we handle propor-
tions to normalize our objectives as we will see). The Wasserstein distance is also a divergence and
thus has better properties than the Kullback-Leibler which constitute the main motivation of this
work: mainly symmetry and geometric interpretations such as the triangle inequality and being
defined even when the compared distributions do not have the same support.

With this research background in mind, we choose to still benefit from the Wasserstein gener-
ative adversarial networks (WGAN) without being adversarial. Indeed, we just see WGAN as an
algorithmic tool to manipulate Wasserstein distances for large scale datasets thanks to its neural
networks stochastic optimization. Thus a probabilistic configuration is needed and we choose
the one of mixture models which actually stood the test of time in several research milestones
done by Machine Learning pioneers like Dempster et al. [1977], Lloyd [1982], Blei et al. [2003], Jain
[2010]. Let us model our data as coming from a mixture distribution of K unknown bu separated
components p1, . . . , pk, . . . , pK weighted by proportions π1, · · · , πk, · · · , πK:

x ∼ p =
K

∑
k=1

πk × pk (17)

which uses the classical data generation model of mixture models [Bouveyron et al., 2019]:

• Pick a cluster index k from the multinomial distribution of parameters π

• Pick a data point x from the data component distribution pk

Identifying the different components distributions pks (and the proportions πks) is recasting
clustering in a probabilistic manner. Based on the presented mixture model, we try to maximize
the Wasserstein distances between the different pks themselves.

Meanwhile, thanks to the Bayes formula, we can get:

pk(x) = p(x)× τk(x)
πk

(18)

and similarly, we define:

p̄k(x) = p(x)× 1− τk(x)
1−πk

(19)

the distribution of the remaining points without the kth group. A reasonable objective appears to
consist in simultaneously maximizing all inter-cluster Wasserstein distances W(pk, p̄k). Indeed,
distributions pks with highly overlapping support correspond to low inter-cluster Wasserstein
distances because each component corresponds to a cluster. In contrast, well separated distributions
pks correspond to bigger inter-cluster Wasserstein distances W(pk, pk′) and W(pk, p̄k) (with k 6= k′).

3.2 Unormalized and Normalized sum of inter-Cluster Wasserstein Distances

We previously established that inter-cluster Wasserstein distances maximization for building a
training objective could be interesting for clustering. In this part of the current work, we present
two attempts: one simple sum and one weighted sum to combine the inter-cluster Wasserstein
distances.

13

Definition 1. Unormalized sum of inter-cluster Wasserstein distances

Lu(p1, . . . , pk, . . . , pK) =
1
K

K

∑
k=1

W(pk, p̄k) (20)

Definition 2. Normalized sum of Wasserstein inter-cluster distances

Ln(p1, . . . , pk, . . . , pK, π1, . . . , πk, . . . , πK) =
K

∑
k=1

πk × (1−πk)×W(pk, p̄k) (21)

In these two objectives definitions, we maximize over p1, . . . , pk, . . . , pK and π1, . . . , πk, . . . , πK
verifying:

• π1 + π2 = 1 with π ∈ R2
+

• p = π1 × p1 + π2 × p2

3.2.1 Sanity Checks

Thanks to a theoretical example with an obvious clustering outcome one could wish, we now try to
understand the interests of choosing one of the two defined objectives. In R2, let us take a data
distribution made of Gaussian and Dirac components:

p =
1

α + β + 1
× (αN (02, σ× I2) + βN (b, σ× I2) + δc) (22)

with α = 104, β = 2× 104, σ = 10−3, b = [m, 0]> and c = [−M, 0]> (m = 9 and M = 100).
This almost Gaussian mixture case (corrupted by a down-weighted and far-located Dirac distri-

bution), it is still interesting to analyze what would happen when clustering with K = 2 groups
making Eq. (20) ending up with the maximization of W(p1, p2) (p1 and p2 being unknown).

We consider two candidate clusterings to understand how compatible is the objective what we
would expect as a good solution.

Example 1. Ideally, a satisfactory solution would be:

pgood
1 =

1
α + 1

× (αN (02, I2) + δc) and pgood
2 = N (b, I2) (23)

with proportions

π
good
1 =

α + 1
α + β + 1

' 0.33 and π
good
2 =

β

α + β + 1
' 0.66 (24)

(switching the indices 1 and 2 does not break any generality). Indeed we believe that the oulier
Dirac distribution δc should be neglectable (thanks to the coefficients α and β being much bigger
than one).

In other words, this would correspond to each cluster being associated with a single Gaussian
beacuse the contribution of the Dirac in the mixture behaves like an outlier. Thus, we investigate
here a rudimentary sanity check towards oultliers robustness.

Example 2. There is a bad clustering candidate that unfortunately gets a better score with respect
to Eq. (20):

pbad
1 =

1
α + β

× (αN (02, I2) + βN (b, I2)) and pbad
2 = δc (25)

with proportions

πbad
1 =

α + β

α + β + 1
' 0.99 and πbad

2 =
1

α + β + 1
' 3.3× 10−5 (26)

In the Normalized Spectral Clustering literature (well explained by Von Luxburg [2007]), a similar
normalization is used for more robust clustering with respect to outliers.

14

Indeed for Eq. (20), the good and bad solutions give approximately (thanks to the chosen
caricatural coefficients α, β, σ, m and M):

Lu(pgood
1 , pgood

2) ' 9 (27)

Lu(pbad
1 , pbad

2) ' 100 (28)

which selects the bad candidate. This prooves the sensitivity of the unormalized objective in Lu
with respect to the outlier Dirac distribution in Eq. (22).

In objectives represented in Lu and Ln , the clusters are separated but Ln avoids degenerate
clustering candidates thanks to the πk × (1−πk) term. In our sanity check example, the previous
bad clustering is smashed out by the normalization in Ln , the first cluster occupies more than
π1 ' 99% of the data leaving the second singleton set with less than π2 ' 0.003%) whereas the
unormalized Lu objective rewards a bad degenerate candidate solution. Indeed for the normalized
objective Ln gives approximately:

Ln(pgood
1 , pgood

2 , π
good
1 , π

good
2) ' 3.92 (29)

Ln(pbad
1 , pbad

2 , πbad
1 , πbad

2) ' 5.9× 10−3 (30)

selecting the expected good candidate clustering.

3.2.2 One-vs-One and One-vs-Rest Strategies

There is also a more principled way to look at our normalized objective Eq. (21) and the πk ×
(1−πk) term. In supervised classification (say logistic regression nicely explained by Hastie et al.
[2005]), we have one-vs-one and one-vs-rest strategies that we use here. More concretely, in a
one-vs-one strategy, it would be reasonable to consider the probability πk × (1−πk′) of choosing
one point from cluster k and the other point from cluster k′ in an independent fashion.

Now we imagine two data generation models to add some theoretical justification to our
objective Eq. (21). First, we can imagine a generation model:

1. Sample two clusters indices (k, k′) independently from the multinomial distribution of pa-
rameters π

2. Observe the Wasserstein distance W(pk, pk′) between the components/clusters associated
with k and k′ (if k = k′ the case is obvious since W(pk, pk) = 0)

The observed Wasserstein distance is a random variable whose mean is:

LOvO
n (p1, . . . , pk, . . . , pK, π1, . . . , πk, . . . , πK) =

K

∑
k=1

K

∑
k′=1

πk ×πk′ ×W(pk, pk′) (31)

which is the mean one-vs-one inter-Wasserstein distance between clusters selected by a multinomial
distribution of parameter π.

The same reasoning can be done with a second and slightly different data generation model:

1. Sample two clusters indices (k, k′) independently from the multinomial distribution of pa-
rameters π

2. Observe the Wasserstein distance W(pk, p̄k) between the kth component and the rest

The observed Wasserstein distance is a random variable whose mean is now:

LOvR
n (p1, . . . , pk, . . . , pK, π1, . . . , πk, . . . , πK) =

K

∑
k=1

πk × (1−πk)×W(pk, p̄k) (32)

which is the mean one-vs-rest inter-Wasserstein distance between clusters selected by a multinomial
distribution of parameter π. This one-vs-rest approach is preferred rather than the one-vs-one
for combinatorial reasons as K grows. One can notice that the previous normalized Wasserstin
sum definition is equal to that one-vs-one point of view definition LOvR

n = Ln but presented in a
different fashion.

15

Decoupling the compared distributions in the Wasserstein distance computation is easier with
the euclidean `2 distance. Indeed, the Kantorovich-Rubinstein [Dudley, 2018] as it is already used
in WGAN [Arjovsky et al., 2017] tells us a decoupled re-definition:

W(µ, ν)
KR
= sup
C∈Lip-1

Ex∼µC(x)−Ey∼νC(y) (33)

where Lip1 is the 1-Lipschitz functions set. Thus, we can write that for three distributions q1, q2, q3
and proportions κ1, κ2 (with κ1 + κ2 = 1):

W(κ1 × q1 + κ2 × q2, q3) = sup
C∈Lip-1

Ex∼κ1×q1+κ2×q2C(x)−Ey∼q3C(y) (34)

but

Ex∼κ1×q1+κ2×q2C(x) =
∫

RD
C(x) (κ1 × q1(x) + κ2 × q2(x)) dx (35)

= κ1 ×
∫

RD
C(x)× q1(x)dx + κ2 ×

∫
RD
C(x)× q2(x)dx

= κ1 ×Ex∼q1C(x) + κ2 ×Ex∼q2C(x)
(36)

and

Ey∼q3C(y) = (κ1 + κ2)×Ey∼q3C(y) (37)

thus

W(κ1 × q1 + κ2 × q2, q3) = sup
C∈Lip-1

Ex∼κ1×q1+κ2×q2C(x)−Ey∼q3C(y) (38)

= sup
C∈Lip-1

κ1 ×
(
Ex∼q1C(x)−Ey∼q3C(y)

)
+κ2 ×

(
Ex∼q2C(x)−Ey∼q3C(y)

)
≤ κ1 × sup

C∈Lip-1
Ex∼q1C(x)−Ey∼q3C(y)

+κ2 × sup
C∈Lip-1

Ex∼q2C(x)−Ey∼q3C(y)

because the maximum of a sum is lower or equal than the sum of each term maxima (which is also
true with supremum instead of maximum) which gives

W(κ1 × q1 + κ2 × q2, q3) ≤ κ1 ×W(q1, q3) + κ2 ×W(q2, q3) (39)

and finally implies that

LOvR
n (p1, . . . , pK, π1, . . . , πK) ≤ LOvO

n (p1, . . . , pK, π1, . . . , πK) (40)

and thus maximizing the lower complexity one-vs-rest objective is maximizing a lower bound of
the one-vs-one objective which is usual in Machine Learning. In this section, we tried to provide
some theoretical justification for our training objective and it is time to tackle the deep learning
angle of it.

3.3 Estimating Wasserstein Distances with Deep Learning

In terms of neural network optimizatin, if we sum up everything we described, membership
probabilities τk(x) = P(c = k|x) are the unknown function outputs of our clustering formulation
which can be represented thanks to a positive function f chained with a sum-1 normalization layer:

∀k ∈ J1, KK τk(x) =
fk(x)

∑K
`=1 f`(x)

(41)

On the Kantorovich side, the critics Ck are also neural networks (of parameters θCk) but with a
1-Lipschitz property gracefuly provided by spectral normalization for each linear (or convolutional)

16

non-activation layers thanks to a simple yet efficient power iteration technique developped recently
by Miyato et al. [2018] which gives enough stability to face large scale datasets in the work of Brock
et al. [2019]. Injecting all these formulas in Ln = LOvR

n , the maximization over all parameters θ
(concatenating the θ fk

s and the θCk s) becomes (in several lines):

LOvR
n (p1, . . . , pK, π1, . . . , πK) = Ex∼p

[
K

∑
k=1

(
τk(x)−πk

)
× Ck(x)

]
(42)

while proportions πk are equal to Ex∼p

(
P(c = k|x)

)
which is kept and maintained à la online

k-Means [Bottou and Bengio, 1995] in their means updates (which can be seen like an Optimal
Control [Bertsekas et al., 1995] self-regulated closed loop mechanism).

Suppose that an oracle gave us the optimal (π∗, θ∗E , θ∗M) and we keep them fixed, does adding a
constant of the Cks critics functions could diverge to ±∞? The answer is no because, by definition
of the proportions in the mixture, we know that Ex∼p [τk(x)] = πk which means that the sign of
τk(x)− πk cannot be constant (it can be always zero but that is an easy case for what we need
to prove). Thus, adding a constant bk to Ck will not change the objective. (and adding a constant
multiplier ak to a valid 1-Lipschitz Ck would violate that 1-Lipschitz constraint).

More generally, the fact that we maintain the null equalities

∀k ∈ J1, KK Ex∼p [τk(x)−πk] = 0 (43)

(thanks to Bottou and Bengio [1995]) and the Lipschitz property together prevent the critics Cks f
rom diverging;

The objective of Eq. (42) favors τk(x) to be far from πk thanks to the maximization: (i) if cluster
memberships τk(x) are too close to their means πk, then the objective would be close to zero
(its lower bound because a positive linear combination of Wasserstein distances Eq. (42) is non-
negative); (ii) when τk(x) is high above its mean πk (bounded by 1), Ck(x) will be high and when
τk(x) is low under its mean (bounded by 0), Ck(x) will be low too. Accordingly, it is interesting to
see that Ck(x) can be seen as a relaxed decision function (i. e. high for points in kth cluster and low
for the other clusters, but bounded in terms of variation due to its Lipschitzian property);

Overlapping Gaussian components of mixtureM are avoided. Intuitively, if we take a region
of the data space where τk(x) and τ`(x) (with k 6= `) are high (meaning E(x) is on an overlapping
zone between two Gaussian components k and `), then the Wasserstein distances W(pk, p̄k) and
W(p`, p̄`) (parts of the objective sum) could have been even more maximized on this region because
they are related to W(pk, p`). Thus our algorithm favors partitions over covers (in spite of our soft
relaxation of memberships).

3.4 Algorithm

Algorithm 4 optimizes Eq. (42) which has only a maximization steps which provides a certain engi-
neering ease compared to the min-max optimization scheme required for the GANs. Nevertheless,
initialization routines turned out to be crucial in practice. For this highly non-convex optimization,
suggest three successive careful initialization steps before the real opitmization.

The optimization of Eq. (42) that we want to accomplish has no guarantee to converge in a global
extrema with our neural networks approach, which is why careful initialization is crucial. That
is why our DiWaC algorithm can be decomposed in four successive steps (three for intializations
and one for the real optimization). In theory, if we had a universal (i. e. regardless of the convexity)
ideal optimizer at our disposal, then the three first steps would be useless but to avoid useless and
spurious local minima, we do a three steps initialization for a final one.

1. Auto-encoder initialization We train a classic auto-encoder (E ,D) (for an encoder E and
decoder D parametrized respectively by θE and θD):

(θ0
E , θ0
D) = arg min

θE ,θD
Ex∼p‖D ◦ E(x)− x‖2

2 (44)

using an auto-encoder initialization is interestingly reminiscent to 1990s ans 2000s pretraining
for neural networks at a time when training time was a much more a burden than today
(although Goodfellow et al. [2016] also mention better activation functions, weight initializa-
tion, variants of gradient descent and regularization methods, we empirically observed that
pretraining is still benefitial for many scenarios both in terms of performance and sometimes
even overall training time).

17

2. EM-based Gaussian mixture codes initialization We fit a Gaussian mixture model M of
proportions ω, means µ and covariance matrices S with the Expectation-Maximization algo-
rithm [Dempster et al., 1977] on the encoded data E(x):

θ0
M = arg max

θM
Ex∼p

[
log

(
K

∑
k=1

ωk ×N (E0(x); µk, Sk × S>k)

)]
(45)

where θM = (ωk, µk, Sk)k=1,...,K. We also precise that this EM-GMM optimization is itself
initialized with k-Means++ [Arthur and Vassilvitskii, 2006]4 on the codes (or encoded inputs
that lie at the bottleneck of the previous step’s autoencoder).

3. Critics initialization We define K critics functions (Ck)k=1,...,K implemented thanks to Miyato
et al. [2018] and parametrized by θC that would estimate the Wasserstein distances weighted
sum with memberships probabilities provided by the previous step’s EM. Indeed, we define
clustering probability functions τk(x) =

ωk×N (E(x);µk ,Sk)

∑L
`=1 ω`×N (E(x);µ`,S`)

to maximize over θC :

θ0
C = arg max

θC
Ex∼p

[
K

∑
k=1

(
τk(x)−πk

)
× Ck(x)

]
(46)

Indeed, we recall that the critics functions Cks are just a convenient tool to estimate the
Wasserstein distances. With bad critics, the gradient of the objective over the memberships
probabilities parameters would be also wrong which is bad news especially when member-
ships functions are previously and nicely initialized. This suggests this warmup step 3 before
the real clustering optimization.
Without that warm-up step 3 (right before the real step 4), we would deteriorate the previous
clustering initializations quality provided by steps 1 and 2 (that is dubbed the “AE + GMM”
initialization by Xie et al. [2015]) because the critics would not be trained enough to estimate
that good clustering while still inflicting ignorant gradient steps on the clustering functions.
To avoid such a bad scenario after steps 1 and 2, the last initialization step 3 corresponds to a
warm-up before the real optimization step 4. This way, thrice the encoder, the mixture and the
critics are reasonably well initialized and the real core step 4 can begin where all three are not
free but just nicely initialized, relaxed and further optimized.

4. Core clustering With the same objective, we do the core, final and well-initialized optimiza-
tion:

θ̂ = arg max
θ

Ex∼p

[
K

∑
k=1

(
τk(x)−πk

)
× Ck(x)

]
(47)

as described in Algorithm 4.

3.5 Model Selection for DiWaC

The goal of model section is to check under/over-fitting and ultimately choose hyper-parameters
such as the number of classes or the architecture of neurons and layers among several trained
models with different hyper-parameters. In this work, our inter-cluster Wasserstein distance
measured in Eq. (42) can be measured on some held-out validation data distributions. As stated
earlier, critics are just a convenient tool to estimate the Wasserstein distances, so there are at least
two ways to estimate the validation objective:

1. Directly (D) “as is”: we simply apply Eq. (42) except for adapted proportions π measured on
these held-out data:

πvalidation ←
1

Nvalidation

Nvalidation

∑
i′=1

τ(xi′) (48)

2. Re-Fitted (R) “with re-optimized critics”: we use the same previously adapted proportions
Eq. (48) and we optimize again the objective Eq. (42) but only with respect to the critics which
corresponds to step 4, Eq. (46). The goal is to refine the objective which corresponds to a
separation power of the clustering in terms of interpretation.

4EM-GMM and k-Means++ provided by scikit-learn [Pedregosa et al., 2011]

18

Algorithm 4 Optimization algorithm (step 4)

1: Input: Data
(xi)i=1,...,N

Number of clusters K
2: Initialization:

θE and θM = (ωk, µk, Sk)k=1,...,K , # initialized from steps 1, 2 and 3

3:
π ← ω # both π and ω

are (re)-parametrized thanks to a softmax on free paramaters

4: T ← 0
5: while θ has not converged do
6: T ← T + 1
7: Free all gradients accumulators
8: Sample a mini-batch of size B from the dataset

(xib)b=1,...,B where ib ∼ UN(1, N)

9: Compute

gibk ←
ωk ×N (E(xib); µk, Sk)

∑K
`=1 ω` ×N (E(xib); µ`, S`)

10: so that
τibk ←

gibk

∑K
`=1 gib`

11: Perform a gradient ascent step of 1
B ∑B

b=1 ∑K
k=1(τibk −πk)× Ck(xib) to update θ

12: Update proportions à la online k-means [Bottou and Bengio, 1995]

π ← π +
1

T + 1
×
((1

B

B

∑
b=1

τib

)
−π

)

13: end while

Traditionally, model selection is accomplished according to the likelihood (or completed
likelihood) related to the Kullback-Leibler divergence (see the Bayesian Information Criterion
BIC [Schwarz et al., 1978] or Information Completed Likelihood ICL [Biernacki et al., 2000] for
examples of extrapolated generalization power measurements). One of the originality of our approach
is that our model selection technique is done according to an other divergence which is the Wasser-
stein distance. This parallel allows us to use the historical likelihood-based literature by replacing
the well-known Kullback-Leibler divergence by the Wasserstein distance to maybe open new
avenues of research for future investigations (e. g. adapting BIC and/or ICL beyond likelihood and
Kullback-Leibler divergence).

In practice here, we train M times our model with different set of hyper-parameters (different
number of clusters, different neural networks structure, different mixture components structure etc.)
Models (θ̂m)m=1,...,M are now evaluated on held-out validation data this time instead of training
data (in which they are trained as usual). Finally, we select the best set of parameters: the model
indexed by m for which the objective (defined in Eq. (42) with adapted proportions) is maximum.

19

3.6 Changing the Metric beyond the Euclidean Distance for DiWaC

In terms of ill-posed problem, the axioms of Kleinberg [2003] are almost satisfied: scale-invariance
is valid, cluster-shapes-invariance is almost valid up to the expression power of the encoder and
critic functions (a. k. a. the capacity of these neural networks in practice) that can be improved
thanks to model selection and only metric-invariance remains but we have the intuition that it can
be improved in future works thanks to the notion of worst metric among a large class of metrics
as briefly evoked in the next chapter. Indeed, at the beginning of that clustering chapter, we
mentioned that our clustering algorithm could not achieve consistency (i. e. metric invariance)
because optimal transport required an initial and definitive commitment for the unique distance
choice in the data space to build a Wasserstein distance for distributions over the data space. In
fact, we could apply some ideas of the next contribution of this thesis to handle a very large class of
distances at once which is possibly better than only one euclidean distance. Of course, according
to the previously cited clustering no-free lunch theorem [Kleinberg, 2003]5, we will never be able
to cover all possible distances. Nevertheless, we could contemplate a solution where our hereby
euclidean distance clustering is an initialization for a newer and better clustering technique for a
large class of distances simulataneously in the future towards more consistency with the work of
Kleinberg [2003] in mind.

4 Experiments

4.1 Implementation details and experimental setup

We did our experiments in Python by using the pyTorch [Paszke et al., 2017] and scikit-learn [Pe-
dregosa et al., 2011] libraries. with the same learning rate of 10−5 with the Adam default optimiza-
tion strategy [Kingma and Ba, 2014] everywhere. k-Means and GMM are not easily compatible
with large scale datasets which is why we took only a reasonable subset of large datasets for these
initializations (which is why this is not crucial). In fact, the online learning of k-Means [Bottou
and Bengio, 1995] is also possible for EM thanks to Cappé and Moulines [2009] but we found our
results already satisfying. In our preliminary experiments, the “AE + GMM” baseline (just the first
2 steps of our algorithm) performed poorly (and with bad reliability not reproducibility) without k-
Means++ [Arthur and Vassilvitskii, 2006] and Xavier neural networks weights initialization [Glorot
and Bengio, 2010]. Thus, all the experiments we report in this work use them.

For optimization reasons (unconstrained or implicitly constrained optimization is more stable
than explicitly constrained optimization especially for stochastic gradient descent), we use two
tricks:

• the SoftMax trick proportions are paremetrized by free logits that are converted into propor-
tions through a SoftMax function6;

• the Cholesky trick each covariance matrix is parametrized by its square root which always
exists in the Cholesky decomposition sense for any covariance matrix (because it must be
symmetric definite and positive, see [Press et al., 2007]) and is a lower-triangular matrix
whose diagonal coefficients are strictly positive (which can be ensured thanks to the use of
the exponential function) to guarantee that when multiplied by its transposed version we get
the correct covariance properties throughout the optimization path.
Unfortunately, we empirically realized that this kind of parametrization is not enough because
of the eigenvalues behavior of that square root matrix: they numerically explode or implode
resulting in ill-conditioned corresponding covariance matrices and create instability. More
precisely, it appeared that when the means are far from the optimal means, the system chooses
to modify its covariance matrices first instead of the means which should be prevented
because of the spurious maxima. Limiting the eigenvalues range is better than an unbounded
exponential function. We use a distorted Sigmoid7 function bounded by two constants
initially parametrized by the variable-wise standard deviations σj of all initial codes variables
E0(xi)j:

(∀t ∈ R) λ + (Λ− λ)× Sigmoid(t) ∈]λ, Λ[(49)

5The “clustering no-free lunch theorem” is not an official nickname but we choose it because it helps understanding the
work of Kleinberg [2003]. The original authors would rather use the clustering “impossibility theorem”.

6SoftMax(v)k =
exp(vk)

∑K
k′=1 exp(vk′)

7Sigmoid(t) = 1
1+exp(−t)

20

where:

λ = 0.3× min
j∈{1,...,d}

σj and Λ = 3× max
j∈{1,...,d}

σj (50)

to be read with mj =
1
N ∑N

i=1 E0(xi)
j and σj =

√
1
N ∑N

i=1(E0(xi)j −mj)2.

In supervised classification, for a known labeled dataset (but hidden to the trained system), the
confusion matrix (a. k. a. matching matrix, contingency matrix or table of confusion) is counting
for every pair (actual class k, predicted class `) the number of occurences of points falling into
that pair configuration (being in group k and category `). Thus, that table can be an interpretation
and visualization tool after a supervised classification or an unsupervised clustering (with ground
truth) on data.

From the confusion matrix M between a given clustering (indexed by the rows k) and a revealed
ground truth (indexed by the columns `), several accuracy measures can be built afterwards:

Hungarian Accuracy (ACC) Thanks to the Hungarian Method [Kuhn, 1955, Stephens, 2000] run
on the confusion matrix (while taking care of the sign thanks to a minus sign and adding the
maximum entry because the Hungarian Method minimizes a sum and we want to maximize
that a sum of occurences), we can measure how good is a clustering

ACC = max
σ

K

∑
k=1

Mk,σ(k) ⇐⇒ min
σ

K

∑
k=1

Ck,σ(k) (51)

where the cost matrix C is adapted with these entries Ck,` =
(
maxk′ ,`′ Mk′ ,`′

)
−Mk,` and an

optimal K-permutation σ tells which cluster σ(k) should cluster k be assigned to.
Normalized Mutual Information (NMI) Measuring an estimator of dependence normalized by

the entropy information contained in both signals is also a classic tool for clustering evaluation
but this time evaluated on the divided confusion matrix M̃ = M

∑k,` Mk,`

NMI =
MI
H

(52)

where

MI = ∑
k,`

M̃k,` log
(

M̃k,`

M̃k,• × M̃•,`

)
(53)

and

H = −∑
k,`

M̃k,` log
(
M̃k,`

)
(54)

and M̃k,• = ∑` M̃k,` and M̃•,` = ∑k M̃k,`

Normalized Conditional Entropy (NCE) In the case where we need to over-cluster (a. k. a. over-
segment the dataset) which is predicting more groups than ground truth semantic ones, it
is interesting to see if the several small predicted clusters fit the fewer and bigger semantic
human ones. In this case, normalized conditional entropy NCE seems appropriate:

NCE =
CE
H

(55)

where the conditional entropy CE is:

CE = ∑
k,`

M̃k,` log
(

M̃k,`

M̃k,•

)
(56)

which makes NCE a kind of an asymetric version of NMI.

4.2 Introductory Examples for Generative Wasserstein Clustering

The probabilistic perspective tackled by Wasserstein-GAN in Arjovsky et al. [2017] approach can
inspire one to think of the Kullback-Leibler alternative with the famous Expectation-Maximization
algorithm for Gaussian mixture models (EM-GMM) [Dempster et al., 1977]. Let’s try to solve the
same problem as EM-GMM by using the Wasserstein distance with Wasserstein-GAN instead of
the Kullback-Leibler divergence (or likelihood up to a sign and a constant term) with EM: take
two Gaussian mixtures A and B both of K = 3 components each in a D-dimensional space (D = 2)
defined by:

21

• K proportions (πA
k)k=1,...,K that are positive and sum to one for A and K proportions (πB

k)k=1,...,K
with same properties;

• K means (µA
k)k=1,...,K for A and K means (µB

k)k=1,...,K for B where the means live in the same
2D space RD;

• K full covariance matrices (ΣA
k)k=1,...,K that are symmetric definite positive in RD×D for A

and K full covariances (ΣB
k)k=1,...,K with same properties for B.

Now for good convergence at step 4, we decompose the successive minimizations and maxi-
mizations by just focusing on the maximization steps of Wasserstein-GANs in a warm-up phase.
Indeed, in section 3.4, after steps 1, 2 and 3, we believe that the decoder and the mixture are
well-initialized but the critic neural network is not. It means that our Wasserstein distance estimator
(provided by the critic neural network) is not good and neither its gradient with respect to the
decoder and the mixture. Concretely, this means that even though the generator (i.e. mixture and
decoder) is well initialized, the first iterations will decrease the initial generation quality because of
a poorly initialized critic that computes our Wasserstein distance value and gradients.

To cope with this bad critic initialization problem at step 4, we choose to optimize the critic alone
which is estimating the Wasserstein distance between 2 fixed distributions (real and generated data
do not change but the critic does) at the beginning of that step 4. This warm-up step concludes a
nice initialization for every parameter as you can see in the toy example represented in Fig. 3 and
the step 4 finally converges into Fig. 4. Of course, this warm-up step initially developed without
generator neural network is also used in our case of WAMiC with the mixture and the decoder as
the two components of the generator: first, we do not change the generator and we only change the
critic neural network until convergence and then we trigger a second step after this warm-up and
the actual min-max Wasserstein GAN optimization scheme takes place.

To illustrate our approach further, we now work on a toy dataset that we call “Three Moons”
with 1000 points for each of the 3 groups in 2 dimensions as presented in Fig. 6. With a code space
of dimension 1, even though the clusters are not linearly separable in the original data space, our
system is able to cluster them in 3 groups with 100% of accuracy.

For that simple toy dataset, most of the clustering work is done by the vanilla auto-encoder.
Indeed, once the auto-encoder is trained, we observed that the 1D codes are already separated
according to the cluster labels. Here, we just wanted to see if model selection was plausible in a
simple scenario.

For the number of clusters, without labels in our unsupervised context, while a classification-
score-based cross-validation is not an option, one can still measure an estimate of the Wasserstein
distance (our loss) in step 3 of section 3.3 but on a validation set. The intuition behind is that if
we did not overfit, our loss function will still be satisfactory on that validation set (that was not
seen during training). After running our first 3 steps algorithm out of 4, we can train a new neural
network f to measure the Wasserstein distance between a held-out validation dataset and some
generated data empirical distributions. More precisely, we find the results presented in Fig. 5
actually selecting 3 clusters which is satisfactory.

4.3 Introductory Examples for Discriminative Wasserstein Clustering

To investigate model selection capabilities of our method and for explanatory reasons, we use here
2 synthetic datasets:

Three Moons 3M To illustrate our approach further, we now work on a toy dataset that we call
“Three Moons” with 1000 points for each of the 3 groups (with a total of N = 3000 points) in
dimensions D = 2 as presented in Fig. 6;

Various 2D Distributions VD Various distributions namely: 2 moons, 1 Gaussian, 1 non-isotropic
Gaussian and 1 Student with different proportions (1000, 1500, 2000, 2500 and 3000 cardinali-
ties respectively and a total of N = 10000 points) in dimension D = 2 in Fig. 7.

First, as described in section 3.4, we trained an auto-encoder on the 3M dataset with a code space
dimension of d = 1: even though the clusters are not linearly separable in the original data space,
our system is able to cluster them in 3 groups with 100% of accuracy (an EM-GMM or a simpler
k-Means run in the codes data is enough!). For that simple toy dataset, most of the clustering work
is done by the vanilla auto-encoder. Indeed, once the auto-encoder is trained, we observed that the
1D codes are already perfectly separated along one axis with respect to the cluster labels. Here, the
point is not to check clustering capabilities but to see if model selection is plausible in this simple
scenario.

22

Datasets MNIST Reuters Reuters-10k HHAR

DiWaC (ours) 98.42 84.24 84.87 92.42
GeWaC (ours with fixed proportions from AE+GMM) 97.37 82.14 82.27 87.54

ClusterGAN [Mukherjee et al., 2019] 90.97 – – –
VaDE [Jiang et al., 2016] 94.06 79.38 79.83 84.46

DEC [Xie et al., 2015] 84.30 75.63 72.17 79.82
AE + GMM (full covariance) 82.56 70.98 70.12 78.48

IMSAT [Hu et al., 2017] 98.40 – 71.00 –
GAR [Kilinc and Uysal, 2018] 98.32 – – –
DEPICT [Dizaji et al., 2017] 96.50 – – –

GMM (diagonal covariance) 53.73 55.81 54.72 60.34
k-Means 53.47 53.29 54.04 59.98

Table 1: Experimental accuracy results (%, the higher, the better) based on the Hungarian method. (the last rows
correspond to methods without neural networks)

Now we study the case where that number of clusters K is not known in order to check if model
selection is possible in these relatively easy settings. The intuition behind our validation procedure
for model selection is that if a given hyper-parameter configuration (the number of clusters in this
experiment) does not lead to under/over-fitting, our objective function will still be satisfactory on
a validation set (i. e. that was not seen during training) compared to other configurations with one
held-out validation set.

In the little more challenging (but still synthetic) VD dataset in Fig. 7, we observe that dealing
with various kinds of distributions (even unknown by the system and beyond the Gaussian case) is
still compatible with our mixture-type model-based clustering algorithm.

4.4 Real Data Experiments

For the real-world experiments, we were interested in 4 datasets with 3 different in nature (images,
sparse and dense data) but all with several hundreds of dimensions per item:

• MNIST: 70 000 handwritten digits images dataset living in dimension 784 (for 28× 28 pixels);

• Reuters: English news stories labeled with a category tree Lewis et al. [2004]. Following DEC
Xie et al. [2015], we used 4 root categories: corporate/industrial, government/social, markets,
and economics as labels and discarded all documents with multiple labels. We computed
tf-idf features on the 2000 most frequent words to represent all articles;

• Reuters-10k: a random subset of Reuters with only 10 000 examples (selected with precisely
the same random generator seed as DEC);

• HHAR: The Heterogeneity Human Activity Recognition (HHAR) dataset Stisen et al. [2015]
contains 10,299 sensor records from smart phones and smart watches. All samples are
partitioned into 6 categories of human activities and each sample is of 561 dimensions.

On MNIST, in Fig. (8), we generated data from our GeWaC further and further in random
directions from the centroids: we see that the digits get fancier away from the centroids. The good
quality of the generation is comparable to those of regular GANs but in a cluster-wise fashion.

In these experiments, we used the same encoder (with symmetric decoder) MLP8 structure
from Xie et al. [2015] D-500-500-2000-d (D is the dimensionality of the input space e. g. D = 784
for MNIST and d = 10 is the dimensionality of the code space) (and ReLU activations) for fair
comparisons with others. In fact, our conditions are tougher than the ones of IMSAT, GAR and
DEPICT that use more sophisticated convolutions than matrix-vector products while DEC, VaDE
and our DiWaC do not which is very encouraging.

The overall results of our DiWaC approach compare favorably to the deep clustering state-of-
the-art in Table. 1. First, we observe that there is an improvement over standard baseline algorithms
(“AE + GMM” compared to GMM and even k-Means) when fed with the output of an AE which is

8MLP stands for Multi-Layer Perceptron

23

coherent with the results of Xie et al. [2015]. We must admit how surprised we are that this “AE
+ GMM” baseline works so well on various datasets. Undiscovered mathematical theories could
tackle this phenomenon: Why would a simple auto-encoder consistently map data in separated Gaussian
groups?. Maybe the auto-encoders layers loosely behave like successive cluster-wise deterministic
random projections [Bingham and Mannila, 2001] and non-linear functions: indeed, the linear
layers matrix entries have Gaussian frequencies but this would require further investigations to
get thorough scientific interpretations. On a more practical level, we are particularly interested in
real-world industrial cases where we highly recommend this “AE + GMM” baseline for its ease of
implementation and good results in practice and also for fast prototyping.

There is a supplementary and significant improvement for DiWaC over its “AE + GMM”
initialization. These good results are even comparable to those of supervised non-convolutional
networks with just a few layers of the 1990s9. On MNIST, the important performance gap between
VaDE and DiWaC can be explained by difficulties (already studied in [Jiang et al., 2016]) with
data that lie extremely close to low-dimensional manifolds, like images. In that regard, our
algorithm inherits the strenghts of WGAN [Arjovsky et al., 2017] and models data much more
faithfully without our DiWaC algorithm being adversarial which means that Optimal Transport
alone is a powerful tool as the non-adversarial work of Genevay et al. [2017] also tends to proove.
Furthermore, as presented previously (section 3.5), our strategy has a natural criterion for model
selection whereas VaDE has no principled model selection criterion; in theory, the validation
likelihood could be used, however, computing the likelihood of for variational techniques remains
an open question (see e.g. [Cremer et al., 2018]). In other works, DEC’s authors propose to use
the ratio between training and validation loss as a criterion, however this ad hoc solution has little
statistical foundations. Model selection is definetely the main feature of our approach on top of
providing good results at same hyper-parameter configurations. In fact, better neural networks
structure can be found by cross-validation with our algorithm which could be done in future work.

9see http://yann.lecun.com/exdb/mnist for a complete supervised MNIST benchmark although they train with
supervised labels whereas we do not have this supervised information.

24

http://yann.lecun.com/exdb/mnist

Figure 3: Same problem as EM-GMM but with a Wasserstein GAN without a generator neural network but a
Gaussian mixture generator instead. A is the red distribution and B the blue one and they get purple when in
local superposition — best seen in colors

25

Figure 4: Converged mixtures (purple because of the superposition of the red and blue mixtures) — best seen in
colors

Figure 5: Wasserstein model selection on the three moons dataset for the number of clusters on a validation
dataset on 30 runs for each number of clusters (the lower the better)

26

Figure 6: Three Moons 3M

Figure 7: Various 2D Distributions VD

27

mk

mk + 0.5Sku

mk + Sku

mk + 1.5Sku

mk + 2Sku

mk + 2.5Sku

mk + 3Sku

mk + 3.5Sku

Figure 8: Generated digits images. From left to right, we have the ten classes found by GeWaC and ordered
thanks to the Hungarian algorithm. From top to bottom, we go further and further in random directions from
the centroids (the first row being the decoded centroids). More specifically, u is sampled from the uniform
random density on the unit hypersphere in the code space.

28

5 Future Work and Conclusion

This work presents twos ways to use the Wasserstein distances literature with neural networks
in order to achieve efficient clustering at the crossroad of Optimal Transport, Neural Networks
and Model-based mixture techniques: first, we did generative clustering and second, we did
discriminative clustering. In spite of three careful initialization steps, our technique is still end-to-
end trainable as theoretically the final step could be done alone but in practice, with an associated
higher risk of being stuck in spurious local extrema and much less reproducibility (i. e. higher
dependence on the pseudo-random generators seeds which we do not have thanks to our robust
and reasonable initialization steps).

In a mockingly accurate description of the generative part of our work, we could say that
placing a mixture distribution at the input of new Generative Adversarial Networks seemed worth-
while for clustering purposes. Indeed, we inherit the recent wealth of literature (see adversarial
autoencoders by Makhzani et al. [2015], Wasserstein autoencoders by Tolstikhin et al. [2018] and
even adversarially learned inference Dumoulin et al. [2017]) with tunable input mixtures each
mode corresponding to a cluster. In fact, it turns out that generating data in a clustered fashion
with the desire to minimize the estimated Wasserstein distance with real data is difficult because of
a mono-component collapsing effect due to a LASSO-kind of constraint on the mixture proportions
which favors degenerated (sparse) proportions. Another way to explain this failure is the richness
of the neural networks expression power that makes the Gaussian mixture clustering useless:
one Gaussian prior is enough to generate whole datasets which looses any clustering capabilities
hope if done carelessly. Eventually, we acknowledge the better and elegant solutions given in the
recent work of Mukherjee et al. [2019] to cope with these problems and nothing can prevent us
from re-using the same techniques with Wasserstein distance for us in lieu of the Jensen-Shannon
divergence they use.

For the discriminative part, we observe that although our DiWaC system sees the data one by
one because of its linear computation and memory complexity, it handles complex relationships
between the points. In a way that is similar to spectral clustering (SC) with pairwise similarities
in particular, but our approach has improved results with an objective function that does not full
storage of pairwise similarities but only optimal transport that encodes it implicitly into the systems
with still pairwises similarities but at a cluster distributions level. Our algorithm detects the space
zones where the density mass is occupied thanks to the probabilistic model inherent to the optimal
transport theory associated to our optimization. For that matter, we did manage to handle the
trade-off between the flexibility of the neural networks functions and the rigidity of the mixture
models choice of distributions. A counter-example would consist in a dataset with non-separable
classes: the system would not know precisely when to activate the low-density threshold in order to
optimally put a class frontier.

Although our work is far from the well-established theory of the Reproducing Kernel Hilbert
Spaces (RKHS), we realize that a similar phenomenon occurs when it comes to satisfactory results:
from an input space of a given reasonable dimensionality D, it is better to first increase that
dimensionality by changing space thanks to a mapping (the first layers of our encoder are increasing
dimensionality compared to D) and only after that, shrink it to a small dimensionality d� D (the
last layer of our encoder). The main difference between our work and the RKHS theory is that our
transformations are learned from the data and not given analytically a priori (e.g. by a Gaussian
kernel) which echoes the work of Unser [2018].

Within the context of the algorithm laid out above, we empirically observe some symbiosis
operating between generative or discriminative clustering and non-linear embedding. A great
advantage of our approach is model selection especially for the number of clusters that seems to
empirically work well. In other tasks different from clustering for itself, encouraged by future over-
clustering investigations, one can be inspired by the work of Liao et al. [2016], that demonstrates
the benefits of clustering-based regularization for supervised classification and generalization.
For example, inside a supervised classification problem, identifying sub-categories might help
to specialize classifiers on more homogeneous classes for improved generalization capabilities
and ease of data interpretations. Finally, we now have the intriguing possibility of following
other successes of the supervised classification and unsupervised clustering communities, such
as the automatic selection of discriminative parts in the spirit of what Sun and Ponce [2016] and
eventually Doersch et al. [2012] did and the automatic setting of the number of clusters. Beyond all
these promising clustering results, our GeWaC algorithm has the ability to generate cluster-wise
data. It is interesting to see that such conditional generation, already explored in the supervised
setting [Mirza and Osindero, 2014] is not fundamentally harder without supervision.

29

References

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In Proceedings
of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research.
PMLR, 2017. URL http://proceedings.mlr.press/v70/arjovsky17a.html.

D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. Technical Report
2006-13, Stanford InfoLab, June 2006. URL http://ilpubs.stanford.edu:8090/778/.

F. R. Bach and Z. Harchaoui. Diffrac: a discriminative and flexible framework for clustering. In
J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, Advances in Neural Information Processing
Systems 20, pages 49–56. Curran Associates, Inc., 2008. URL http://papers.nips.cc/paper/
3269-diffrac-a-discriminative-and-flexible-framework-for-clustering.pdf.

D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas. Dynamic programming and
optimal control. Athena scientific Belmont, MA, 1995.

C. Biernacki, G. Celeux, and G. Govaert. Assessing a mixture model for clustering with the
integrated completed likelihood. IEEE Pattern Analysis and Machine Intelligence, 22(7):719–725,
2000. doi: 10.1109/34.865189.

E. Bingham and H. Mannila. Random projection in dimensionality reduction: applications to
image and text data. In D. Lee, M. Schkolnick, F. J. Provost, and R. Srikant, editors, Proceedings of
the seventh ACM SIGKDD International Conference on Knowledge discovery and Data Mining, San
Francisco, CA, USA, August 26-29, 2001, pages 245–250. ACM, 2001. URL http://portal.acm.
org/citation.cfm?id=502512.502546.

C. M. Bishop. Pattern recognition. Machine Learning, 128, 2006.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of Machine Learning
Research, 2003. URL http://jmlr.org/papers/v3/blei03a.html.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859–877, 2017.

L. Bottou and Y. Bengio. Convergence Properties of the K-Means Algorithms. In Advances in Neural
Information Processing Systems, pages 585–592, 1995.

C. Bouveyron and C. Brunet. On the estimation of the latent discriminative subspace in the
Fisher-EM algorithm. Journal de la Société Française de Statistique & revue de statistique appliquée,
2011.

C. Bouveyron and C. Brunet. Simultaneous model-based clustering and visualization in the fisher
discriminative subspace. Statistics and Computing, 22(1):301–324, 2012.

C. Bouveyron and C. Brunet-Saumard. Discriminative variable selection for clustering with the
sparse fisher-em algorithm. Computational Statistics, 29(3-4):489–513, 2014a.

C. Bouveyron and C. Brunet-Saumard. Model-based clustering of high-dimensional data: A review.
Computational Statistics and Data Analysis, 71:52–78, 2014b.

C. Bouveyron, G. Celeux, T. B. Murphy, and A. E. Raftery. Model-Based Clustering and Classification for
Data Science: With Applications in R. Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press, 2019.

A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training for high fidelity natural image
synthesis. 7th International Conference on Learning Representations, ICLR 2019, 2019.

O. Cappé and E. Moulines. On-line expectation–maximization algorithm for latent data models.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(3):593–613, 2009.

C. Cremer, X. Li, and D. Duvenaud. Inference suboptimality in variational autoencoders. arXiv
preprint arXiv:1801.03558, 2018.

30

http://proceedings.mlr.press/v70/arjovsky17a.html
http://ilpubs.stanford.edu:8090/778/
http://papers.nips.cc/paper/3269-diffrac-a-discriminative-and-flexible-framework-for-clustering.pdf
http://papers.nips.cc/paper/3269-diffrac-a-discriminative-and-flexible-framework-for-clustering.pdf
http://portal.acm.org/citation.cfm?id=502512.502546
http://portal.acm.org/citation.cfm?id=502512.502546
http://jmlr.org/papers/v3/blei03a.html

T. R. Davidson, L. Falorsi, N. D. Cao, T. Kipf, and J. M. Tomczak. Hyperspherical variational
auto-encoders. pages 856–865, 2018. URL http://auai.org/uai2018/proceedings/papers/
309.pdf.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
EM algorithm. Journal of the royal statistical society. Series B (methodological), pages 1–38, 1977.

N. Dilokthanakul, P. A. Mediano, M. Garnelo, M. C. Lee, H. Salimbeni, K. Arulkumaran, and
M. Shanahan. Deep unsupervised clustering with gaussian mixture variational autoencoders.
arXiv preprint arXiv:1611.02648, 2016.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real nvp. International Conference
on Learning Representations, 2017.

K. G. Dizaji, A. Herandi, C. Deng, W. Cai, and H. Huang. Deep clustering via joint convolutional
autoencoder embedding and relative entropy minimization. In 2017 IEEE International Conference
on Computer Vision (ICCV), pages 5747–5756. IEEE, 2017.

C. Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.

C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. A. Efros. What makes paris look like paris? ACM
Transactions on Graphics (SIGGRAPH), 31(4):101:1–101:9, 2012.

J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial feature learning. Proceedings of the Interna-
tional Conference on Learning Representations, 2016.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. John Wiley and Sons, 2012.

R. M. Dudley. Real analysis and probability. Chapman and Hall/CRC, 2018.

V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and A. Courville.
Adversarially learned inference. In International Conference on Learning Representations, 2017.

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics, 7(2):
179–188, 1936.

R. Flamary, M. Cuturi, N. Courty, and A. Rakotomamonjy. Wasserstein discriminant analysis.
Machine Learning, 107(12):1923–1945, 2018. ISSN 15730565. doi: 10.1007/s10994-018-5717-1.

C. Fraley and A. E. Raftery. Model-based clustering, discriminant analysis, and density estimation.
Journal of the American statistical Association, 97(458):611–631, 2002.

A. Genevay. Entropy-regularized optimal transport for machine learning. PhD thesis, 2019.

A. Genevay, G. Peyré, and M. Cuturi. Learning Generative Models with Sinkhorn Divergences.
(2017-83), Oct. 2017. URL https://ideas.repec.org/p/crs/wpaper/2017-83.html.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Y. W. Teh and M. Titterington, editors, Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research, pages
249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL http://proceedings.
mlr.press/v9/glorot10a.html.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems,
pages 2672–2680, 2014.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

I. J. Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. 2016. URL http://arxiv.
org/abs/1701.00160.

A. Graves. Stochastic backpropagation through mixture density distributions. arXiv preprint
arXiv:1607.05690, 2016.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved training of wasser-
stein gans. arXiv preprint arXiv:1704.00028, 2017.

31

http://auai.org/uai2018/proceedings/papers/309.pdf
http://auai.org/uai2018/proceedings/papers/309.pdf
https://ideas.repec.org/p/crs/wpaper/2017-83.html
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160

T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin. The elements of statistical learning: data
mining, inference and prediction. The Mathematical Intelligencer, 27(2):83–85, 2005.

W. Hu, T. Miyato, S. Tokui, E. Matsumoto, and M. Sugiyama. Learning discrete representations
via information maximizing self-augmented training. In D. Precup and Y. W. Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 1558–1567. PMLR, 06–11 Aug 2017.

A. K. Jain. Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 2010. ISSN
01678655.

Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou. Variational deep embedding: A generative
approach to clustering. 2016. URL http://arxiv.org/abs/1611.05148.

O. Kilinc and I. Uysal. Learning latent representations in neural networks for clustering through
pseudo supervision and graph-based activity regularization. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=HkMvEOlAb.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. In Proceedings of the 2nd International
Conference on Learning Representations (ICLR), number 2014, 2013.

D. P. Kingma, T. Salimans, and M. Welling. Variational dropout and the local reparameterization
trick. In Advances in neural information processing systems, pages 2575–2583, 2015.

D. P. Kingma, M. Welling, et al. An introduction to variational autoencoders. Foundations and
Trends® in Machine Learning, 12(4):307–392, 2019.

J. M. Kleinberg. An impossibility theorem for clustering. In Advances in Neural Information Processing
Systems, pages 463–470, 2003.

H. W. Kuhn. The hungarian method for the assignment problem. Naval research logistics quarterly, 2
(1-2):83–97, 1955.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new benchmark collection for text categorization
research. Journal of machine learning research, 5(Apr):361–397, 2004.

R. Liao, A. Schwing, R. Zemel, and R. Urtasun. Learning deep parsimonious representations. In
Advances in Neural Information Processing Systems, pages 5076–5084, 2016.

S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):
129–136, 1982. URL https://doi.org/10.1109/TIT.1982.1056489.

A. Makhzani, J. Shlens, N. Jaitly, and I. Goodfellow. Adversarial autoencoders. arXiv preprint
arXiv:1511.05644, 2015.

M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784,
2014.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative adversarial
networks. In International Conference on Learning Representations, 2018.

S. Mukherjee, H. Asnani, E. Lin, and S. Kannan. ClusterGAN: Latent Space Clustering in Generative
Adversarial Networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 4610–4617, 2019. doi: 10.1609/aaai.v33i01.33014610.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
and A. Lerer. Automatic differentiation in pytorch. In NIPS-W, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:
2825–2830, 2011.

32

http://arxiv.org/abs/1611.05148
https://openreview.net/forum?id=HkMvEOlAb
https://doi.org/10.1109/TIT.1982.1056489

G. Peyré, M. Cuturi, et al. Computational optimal transport. Foundations and Trends® in Machine
Learning, 11(5-6):355–607, 2019.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes 3rd edition: The
art of scientific computing. Cambridge university press, 2007.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques
for training gans. In Advances in Neural Information Processing Systems, pages 2234–2242, 2016.

G. Schwarz et al. Estimating the dimension of a model. The annals of statistics, 6(2):461–464, 1978.

M. Stephens. Dealing with label switching in mixture models. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 62(4):795–809, 2000.

A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B. Kjærgaard, A. Dey, T. Sonne, and M. M.
Jensen. Smart devices are different: Assessing and mitigatingmobile sensing heterogeneities for
activity recognition. pages 127–140, 2015.

J. Sun and J. Ponce. Learning Dictionary of Discriminative Part Detectors for Image Categorization
and Cosegmentation. In International Journal of Computer Vision, volume 120, pages 111–133, 2016.
doi: 10.1007/s11263-016-0899-0.

I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf. Wasserstein auto-encoders. In Interna-
tional Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=
HkL7n1-0b.

M. Unser. A representer theorem for deep neural networks. arXiv preprint arXiv:1802.09210, 2018.

C. Villani. Optimal transport: old and new, volume 338. Springer Science and Business Media, 2008.

U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416, 2007.

J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep embedding for clustering analysis. arXiv
preprint arXiv:1511.06335, 2015.

33

https://openreview.net/forum?id=HkL7n1-0b
https://openreview.net/forum?id=HkL7n1-0b

	Introduction
	Related Work
	Model Selection
	Reparametrization Trick for a Mixture

	Generative Wasserstein Clustering
	Deep Generative Models for Clustering
	Concatenation Trick
	Algorithm
	Model Selection for GeWaC
	Collapsing Effects

	Discriminative Wasserstein Clustering
	Wasserstein Distances between Clusters
	Unormalized and Normalized sum of inter-Cluster Wasserstein Distances
	Sanity Checks
	One-vs-One and One-vs-Rest Strategies

	Estimating Wasserstein Distances with Deep Learning
	Algorithm
	Model Selection for DiWaC
	Changing the Metric beyond the Euclidean Distance for DiWaC

	Experiments
	Implementation details and experimental setup
	Introductory Examples for Generative Wasserstein Clustering
	Introductory Examples for Discriminative Wasserstein Clustering
	Real Data Experiments

	Future Work and Conclusion

