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Abstract

Machine learning and pattern recognition requires data analysis: a process of inspecting, cleans-
ing, transforming and modeling data with the goal of discovering useful information, informing
conclusion and supporting decision-making. Unsupervised learning as a scientific field provide
tools for dimensionality reduction, visuzalization procedures, features extraction etc. in order to
empower human beings with enough computational power to grasp the environment we live in.

This chapter is more of plea for further investigations towards unsupervised feature importance
rather than a scientific contribution. Indeed, we revisit notions such as differenciation for distribu-
tions, distribution Wasserstein-based metrics and manifold normal in order to call for both further
theoretical and practical research work.
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1 Introduction

This chapter aims at exploring possible statistical and algorithmical tools for unsupervised feature
importance extraction. Indeed, the problem of extracting the absolute or relative importance of
data coordinates is of high interest for understanding data. In supervised learning, revisiting
the principle of Occam’s razor gave birth to a considerable literature and we suggest at least one
thesis to the reader: Structured Sparsity-Inducing Norms: Statistical and Algorithmic Properties with
Applications to Neuroimaging, the Ph.D. manuscript of Jenatton [2011] which combines coordinate
selection, weighting and structure in high-dimensional problems such as neuro-imaging. At the
same time, the decision trees literature also carefuly studied the problem in several works by
Breiman [2001, 2017] and more recently, there is a will to break the black box taboo of neural networks
being supposedly non-interpretable with interesting attempts by Knight [2007] and de Sá [2019].
The emerging popularity of add-on toolboxes such as Captum [Kokhlikyan et al., 2019] is a solid
proof showing a research trend towards input space interpretability in supervised settings at least.

Back in unsupervised learning, the problem of selecting or weighting coordinates by relevance
is probably an ill-posed problem because there is no supervision. As usual in pattern recognition,
we assume that data live in an instrisically low-dimensional manifold compared to the whole
data space dimensionality. If we are able to find a machine learning procedure able to compute
an hyper-surface normal of that manifold at each point of it, then we can interpret that normal
direction coordinates as relevant or not for describing the manifold. More precisely, we can ask
ourselves Is it possible to maximally change a manifold of data with an infinitesimally small distortion?
and the distortion would be a function of space giving high amplitudes to coordinates that one
should not change in order to preserve the manifold consistency. This question is reminiscent to the
notion of gradient and we make the hypothesis that perturbating data in an infinitesimally small
fashion can be done with gradient of a Wasserstein distance between the real data distribution and
a pertubated version of it.

One possible application of this work could be unsupervised foreground / background seg-
mentation. Indeed, from a dataset of images containing the same high-level semantic category of
content (e. g. “wolves”) in several outdoor / indoor conditions, the revealed coordinates would
select foreground pixels from background non-content-manifold-specific pixels (that can intuitively
be changed without breaking the semantic meaning of the image category). Generalizing such an
automatic tool would be of great interest in many scientific fields beyond computer vision.

2 InWaMaDi: Infinitesimal Wasserstein Maximal Distortion

In the previous chapter ??, we reviewed some consequences of the impossibility theorem by
Kleinberg [2015]. In particular, the metric invariance is an interesting and difficult subject. Indeed,
it seems that choosing a particular metric is a heavy commitment. This is especially true in
unsupervised learning probably because determining a metric is choosing the algorithms lenses for
seeing the data without supervision which is redefining a notion of neighborhood tainted by the
curse of dimensionality we mentioned earlier in introduction section ??.

For a random variable x coming from distribution p living in a space X (say RD), we can
consider the distortion function D = t×F mapping X to X (and t ∈ R+) which creates a second
random variable y defined by:

y = x +D(x) = x + t×F (x) (1)

which defines a new distribution qt,F . For the sake of simplicity, we impose:

(∀x ∈ RD) ‖F (x)‖2 = 1 (2)

so that the length of the distortion is simply t. Our goal is to measure how different a perturbated
distribution qt,F can be from the original distribution p with an infinitesimal length t and con-
strained energy ‖F (x)‖2 = 1. Thanks to an already successful probabilistic approach in Machine
Learning [Murphy, 2012], we rephrase our question set out in our introduction: What is the infinitesi-
mal steepest distortion of data? Indeed, this kind of approach would give a function F such that when
applied to each data point xi ∈ RD, the computed vector F (xi) ∈ RD would tell which coordinate
(x(j)

i )j=1,...,D is relevant i. e. characteristic in an interpretable way for deeper data analysis especially
when the dimensionality D is high.

There is a natural mathematical and geometric tool to measure a distortion for distributions:
the Wasserstein distance when the associated data space metric is d. Thus, inspired by the opti-
mization idea of steepest gradient direction, we can first define such a function measuring a quantity
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corresponding to the discrepancy L(t,F , d) induced by the distortion D = t × F , namely the
Wasserstein distance (based on metric d) between the distributions p and qt,F :

L(t,F , d) = min
γ∈Γ(p,qt,F )

E(x,y)∼γ [d(x, y)] (3)

and because

y ∼ qt,F ⇐⇒ y = x′ + t×F (x′) and x′ ∼ p (4)

we get (without applying a change of variable formula involving a Jacobian term):

L(t,F , d) = min
γ′∈Γ(p,p)

E(x,x′)∼γ′
[
d(x, x′ + t×F (x′))

]
(5)

with Γ(p, q) being the set of coupled distributions with marginals p and q. Please note that without
the min operator, this change of variable would not have been valid: between Eq. (3) and Eq. (5),
the optimal transport changed from γ to γ′ because they are different since Eq. (4).

Now we revisit the notion of steepest function Wasserstein direction gives an optimization problem:

F ∗d = arg max
F
|∇tL(0,F , d)| (6)

where for a given direction F and metric d, the quantity ∇tL(0,F , d) is the derivative of function
t 7→ L(t,F , d) on t = 0+ which is:

∇tL(0,F , d) = lim
t→0+

L(t,F , d)−L(0,F , d)
t− 0

(7)

which simplifies in:

∇tL(0,F , d) = lim
t→0

L(t,F , d)
t

(8)

because p = q0,F for all direction F and so, we get:

F ∗d = arg max
F

lim
t→0+

L(t,F , d)
t

(9)

At this point, we ignored the distance d operating in the data space X = RD but we can build such
a distance in a form that parses a large variety of metrics:

dφ : RD ×RD → R+ (10)
(x, y) 7→ ‖φ(y)− φ(x)‖2

and we note that dφ(x, y) = (L2 ◦ φ)(x, y) = L2(φ(x), φ(y)) (L2 being the euclidean distance).
We make sure that φ is a smooth bijection so that we inherit injectivity (and differentiability for

optimization reasons we will see later). Indeed, such a bijective φ allows the associated function dφ

to verify the distinguishability property of a distance, namely:

(∀(x, y) ∈ RD ×RD) x = y ⇐⇒ φ(x) = φ(y) (11)
⇐⇒ 0 = L2(φ(x), φ(y)) = dφ(x, y) (12)

and the other required properties for being a distance: positivity, symmetry and triangular inequal-
ity are given for free thanks to the euclidean distance.

Moreover, we also want to avoid some equivalence class explosion effect due to the fact that there
is no practical difference of interpretation between choosing a given metric d and a proportional one
α× d (with α > 0) especially for explosively large coefficient α. Avoiding such annoying properties
can be obtained by constraining the variations of the function φs indexing the distances space made
of dφs. Mathematically, the notion of variation for a multivariate bijective function φ is studied
thanks to the derivative matrix ∇φ(x) ∈ RD×D called the Jacobi matrix at each point x ∈ RD and
the main variation directions are given by its eigen values (λ(x)(j))j=1,...,D. Thus we can propose
two ways to constrain these variations:
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Bounding Amplitude (BA) We limit the Jacobi eigenvalues amplitude:

(∀x ∈ RD)(∀j ∈ J1, DK) λ(x)(j) ∈ [Jmin, Jmax] ⊂ R∗+ (13)

Zeroing Global Log-Amplitude (ZGLA) We enforce a null logarithm of Jacobi determinant mean:

0 = κ = Ex̃∼U (p,qt,F ) log |det∇φ(x̃)| = Ex̃∼U (p,qt,F )

[
D

∑
j=1

log λ(x̃)(j)

]
(14)

where:

x̃ ∼ U (p, qt,F ) means x̃ = u× x + (1− u)× y (15)
with u ∼ UR(0, 1)
and x ∼ p
and y = x′ + t×F (x′) with x′ ∼ p

Indeed, we need that “zero overall Jacobian property” being true but only over the convex
enveloppe of the original and distorted points and not necessarily on the whole space RD

(manily because we will not evaluate the functions at hand anywhere else outside that
enveloppe). This convex enveloppe sampling technique has been used for maintaining a
Lipschitzian constraint by Gulrajani et al. [2017].

These two combined constraints over the set of smooth bijections defines the functions set Φ. For
more mathematical details, we highly recommend the reader the thorough academic book by
Ambrosio et al. [2008] to conduct further and more principled studies.

2.1 A Simplified Case: Empirical Distributions

Before doing some mathematical proposals, we study in this section a simplified case where only
empirical distributions are at stake. For that simplified scenario with euclidean distance, we handle
p̃ = 1

B ∑B
b=1 δxib

an empirical distribution from p, we also have q̃t,F = 1
B ∑B

b=1 δxib
+t×F (xib

) from

qt,F . For all t ∈
[
0, 1

2 mini,i′ ‖xi′ − xi‖2

]
the optimal transport between p̃ and q̃t,F is the natural one

as the Fig. 1 shows (we will proove the general case later):

WL2( p̃, q̃t,F ) = min
γ∈Γ( p̃,q̃t,F )

E(x,y)∼γ‖y− x‖2 (16)

= min
γ′∈Γ( p̃,p̃)

E(x,x′)∼γ′‖x′ + t×F (x′)− x‖2

but with empirical distributions, the transport γ′ is in fact an assignment π of integers ib pars-
ing the points in the p̃ = 1

B ∑B
b=1 δxib

sum to the integers ib′ parsing the points in the q̃t,F =
1
B ∑B

b′=1 δxib′
+t×F (xib′

) with π(i) = i′:

WL2( p̃, q̃t,F ) = min
π

1
B

B

∑
b=1
‖xπ(ib) + t×F (xπ(ib))− xib‖2 (17)

=
1
B

B

∑
b=1
‖xib + t×F (xib)− xib‖2 = t

so that limt→0+
WL2 ( p̃,q̃t,F )

t = 1 for all directions F .
Unfortunately, this is not useful because it means that all F directions are equally distorting the

original distribution with respect to the euclidean Wasserstein distance in a quantity that does not
even depend on the distribution p̃.

Based on that failed study, we decide to also optimize the distance dφ to get non trivial F
directions of distortion because we just saw that the euclidean distance is independent from the
manifold at hand and thus too much isotropic in a data-independent fashion. Optimizing the
distance, gives a new optimization problem:

max
F ,φ

(
lim

t→0+

Wdφ
(p, qt,F )

t

)
(18)
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Figure 1: Optimal and Natural Transports are the same in Euclidean Distance Case for close Disttributions

instead of maxF

(
limt→0

WL2 (p,qt,F )
t

)
= 1 that previously left us with no optimization hope. This

Eq. (18) is much more powerful because we do not only get the steepest distortion but also the pair
of steepest distortion direction F and optimized associated metric dφ.

Now that we have a better grasp on what is mathematically going on, we tackle the general
(smooth) distributions case.

2.2 General Distribution Case

The ideas we just briefly tackled are appealing and now we give a rather theoretical result in order
to pursue the optimization side in a general case beyond the euclidean distance.

Proposition. For an infinitesimally small distortion D = t×F , the optimal transport between the
original distribution p and distorted distribution qt,F is the natural transport for all smooth metric
dφ indexed by bijection φ:

(∃M ∈ R∗+)(∀t ∈ R∗+) t < M =⇒ Wdφ
(p, qt,F ) = min

γ∈Γ(p,qt,F )
E(x,y)∼γ

[
dφ(x, y)

]
= Ex∼p

[
dφ(x, x + t×F (x))

]
Proof. For all pair (x, y) of points drawn from any transport γ ∈ Γ(p, qt,F ), there exists a point x′

such that y = x′ + t×F (x′) because this is how qt,F is built. Applying a Taylor expansion on the
function fx,x′ defined by:

fx,x′(t) = dφ(x, x′ + t×F (x′)) (19)

gives:

dφ(x, y) = dφ(x, x′ + t×F (x′)) (20)
= fx,x′(t)
= fx,x′(0) + t×∇t fx,x′(0) + o(t)
= dφ(x, x′) + t×∇t fx,x′(0) + o(t)

(21)

Let’s focus on the second term ∇t fx,x′(0), we know thanks to a Taylor expansion on φ around x′

that:

fx,x′(t) = ‖φ(x′ + t×F (x′))− φ(x)‖2 (22)
= ‖φ(x′)− φ(x) + t×∇φ(x′)×F (x′) + o(t)‖2
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and thus the only remaining non-negligible term depending on t gives:

∇t fx,x′(0) = ‖∇φ(x′)×F (x′)‖2 (23)

and in the end, for Eq. (20), we obtain:

dφ(x, y) = dφ(x, x′) + t× ‖∇φ(x′)×F (x′)‖2 + o(t) (24)

and from that Eq. (24) as for all transport γ ∈ Γ(p, qt,F ) there is an associated coupling γ′ ∈ Γ(p, p)
such that each pair (x, y) ∼ γ corresponds to the pair (x, x′) ∼ γ′ (as seen earlier) we get:

E(x,y)∼γ

[
dφ(x, y)

]
= E(x,x′)∼γ′

[
dφ(x, x′)

]
(25)

+t×Ex′∼p
[
‖∇φ(x′)×F (x′)‖2

]
+t× εF ,γ(t)

where limt→0 εF ,γ(t) = 0 and one can note that the second term decouples the (x, x′) pairing. If we
consider the natural transport γ∗ (i. e. (x, y) ∼ γ∗ ⇐⇒ (x ∼ p and y = x + t×F (x)), then we
can measure the difference D(γ, γ∗) for any other non-natural transport γ:

D(γ, γ∗) = E(x,y)∼γ

[
dφ(x, y)

]
−E(x,y)∼γ∗

[
dφ(x, y)

]
(26)

= E(x,x′)∼γ′
[
dφ(x, x′)

]
+ t×

(
εF ,γ(t)− εF ,γ∗(t)

)
thanks to Eq. (25)

which is positive for a t > 0 sufficiently small because limt→0 |εF ,γ(t)− εF ,γ∗(t)| = 0 which proves
that the natural transport γ∗ has the minimal transport cost and thus is the optimal transport.

When we briefly saw the empirical distribution and euclidean case, it appeared that when the
distortion is sufficiently low in amplitude (i. e. with a small t), the optimal transport is the natural
one (assigning each original point to its distorted version). With that proposition above in mind
and in order to build an optimization objective and an algorithm, we propose a procedure to get a
value of such a t > 0 satisfying:

max
b
‖φ(xib)− φ(xib + t×F (xib))‖2 ≤

1
2

min
b,b′
‖φ(xib)− φ(xib′ )‖2 (27)

The right term does not depend on t and is easily computed from mini-batches of data. The left
term can be approximated to guess the right order of magnitude for t that we can divide later until
the inequality Eq. (27) is satisfied in a dichotomic fashion. Indeed:

‖φ(xib)− φ(xib + t×F (xib))‖2 ' t× ‖∇φ(xib)×F (xib)‖2 (28)
≤ t× Jmax because ‖F (xib)‖2 = 1

and thus

tk =
minb,b′ ‖φ(xib)− φ(xib′ )‖2

2k+1 × Jmax
(29)

with an increasing k ∈N∗ is a good strategy until satisfying Eq. (27).

3 Optimization

In this section, we present a draft of an optimization strategy to summarize the ideas we just
presented with neural networks implementations for functions. This is about leveraging the
research effort for deep learning in general and GANs in particular for our representation learning
and data analysis purposes.

Indeed, we have the function F implemented by a neural network of pararameters θF mapping
RD to RD. We add some layers: a SoftMax layer followed by an element-wise square-root layer
with kept sign layer such that we maintain the norm 1 constraint on F .

Thanks to some work accomplished in a different context by Dinh et al. [2017], the implementa-
tion of bijection φ in a special neural network of parameters θφ is already done and the constraints
needed in section 2 are easily applicable. More specifically, we keep on zeroing the overall jacobian
mean in a way that is similar to online k-Means [Bottou and Bengio, 1995] via an intermediate
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bijection ψ that we divide by scalar κ for control the variation of φ = exp(−κ
D ) × ψ. All these

parameters are concatenated in θ that the algorithm 2 optimizes.
Maintaining the constrains that we required Eq. (13) and Eq. (14) in section 2 is facilitated by the

structure of our bijective neural network that we took from Dinh et al. [2017]. Indeed, for bijection
ψ implemented by L bijective layers ψ = LayerL ◦ · · · ◦ Layer` ◦ · · · ◦ Layer1, we have at each layer
` among L:

x[:d] 7→ y[:d` ] = Layer`(x)[:d` ] = x[:d` ] (30)

x[d` :] 7→ y[d` :] = Layer`(x)[d` :] = x[d` :] × exp(s`(x[:d` ])) + t`(x[:d` ])

where the functions s`s and t`s are free neural networks (with pythonic notations for dimensions
and without loss of generality in the coordinates order but with an arbitrary pivot d`) and then we
can bound the associated Jacobi matrices:

∇Layer`(x) =

(
Id` 0d`×(D−d`)

– diag(exp(s`(x[:d` ])))

)
(31)

and log |det∇Layer`(x)| =
D−d`

∑
j=1

s(j)
` (x[:d` ])

Thanks to the chain rule applied to such a bijection ψ as a composition of layers from x0 = x to
x` = Layer`(x

`−1) for ` ∈ J1, LK, we can collect through the forward computations of the function
ψ output and sum the outputs of s` in order to get κ:

κ = Ex∼U (p,qt,F ) [log |det∇ψ(x)|] = Ex∼U (p,qt,F )

[
L

∑
`=1

D−d`

∑
j=1

s(j)
` (x`−1

[:d` ]
)

]
(32)

Having an updated estimate of κ allows us to use φ = exp(−κ
D )× ψ instead of ψ directly such that

log |det∇φ(x)| = log |det∇ψ(x)| − κ which as zero mean. For numerical stability reasons, we can
impose on the neural networks s`s to have a final element-wise 3×tanh

∑L
`=1(D−d`)

layer so that κ ∈ [−3, 3]

is bounded and thus for the local stretching amplitude it gives: J`min/max = exp( ±3
D−d`

).
Recently, some Generative Adversarial Networks articles by Pan et al. [2019] and Detlefsen

et al. [2019] report some evidence that the Kantorovich-Rubinstein formulation implemented by
neural networks in Lipschitz functions [Miyato et al., 2018] has positive regularization effects on
the computation and optimization of the Wasserstein-based losses. To benefit from these advances,
let’s recall what we wanted:

max
F ,φ

(
lim

t→0+

Wdφ
(p, qt,F )

t

)
(33)

Thanks to that Kantorovich-Rubinstein duality (used for example for Wasserstein Generative
Adversarial Networks first by Arjovsky et al. [2017]), we know that for sufficiently low value of t
(with some approximation):

Wdφ
(p, qt,F ) = WL2(pφ, qφ,t,F ) = max

C∈Lip1

Ex∼p
[
C
(
φ(x)

)
− C

(
φ(x + t×F (x)

)]
(34)

In fine, we can forget about the limit operator in Eq. (33) for a low value of t because the optimal
transport is the natural transport even in the Kantorovich-Rubinstein formulation and thus we
have:

max
θF ,θφ ,θC

L(θF , θφ, θC) (35)

with

L(θF , θφ, θC) =
Ex∼p

[
C
(
φ(x)

)
− C

(
φ(x + t×F (x)

)]
t

(36)

and in a stochastic gradient descent strategy, the only important quantity is a bias-free estimate of
the gradient [Robbins and Monro, 1951]:

∇̂L(θF , θφ, θC) =
∇
[
∑B

b=1 C
(
φ(xib)

)
− C

(
φ(xib + t×F (xib)

)]
t× B

(37)
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for a small t and some B random indices ib ∼ UN(1, N).
In conclusion of this section, the optimization problem finally gets:

max
θF ,θφ ,θC

(
Ex∼p

[
C
(
φ(x)

)
− C

(
φ(x + t×F (x)

)]
t

)
(38)

such that φ is bijective, C is 1-Lipschitz and F Jacobian the BA and ZGLA properties in Eq. (13) and
Eq. (14) for small t given by Eq. (29).
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4 Algorithm

Figure 2: Unsupervised Feature Importance Algorithm
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5 Possible Computer Vision Applications

For the specific computer vision scientific field, pixels are made of one or three coordinates (for
gray levels or color images respectively), so showing relevant pixels in images of the same category
could lead to an unsupervised foreground/background segmentation where the only supervision
is the fact that all images belong to the same semantic category. A similar problem was tackled
by Joulin et al. [2010] a few years ago but with a little more supervision: we have access to several
images categories labels and they call the problem cosegmentation. As they stated:

Purely bottom-up, unsupervised segmentation of a single image into foreground
and background regions remains a challenging task for computer vision.

This remains true for all kind of data but without different meanings. Fundamentally, if one has
a dataset, one could interpret relevance measurements this kind of algorithms could provide. In
computer vision, the core idea of co-segmentation is that the availability of multiple images that
contain instances of the same “object” classes makes up for the absence of detailed supervisory
information. Some research has been efficiently conducted for interactive foreground / background
segementation [Rother et al., 2004] but here we would want to avoid user interaction and benefit
from a whole dataset: a class of data sharing a common pattern that we want to highlight. The only
form of supervision is knowing that data share some information of interest without knowing what
precisely.

6 Future Work and Conclusion

Investigating Wasserstein distances with varying metric seems promising for future work. This
sketch of contribution can be a stepstone answer to metric invariance pointed out by Kleinberg
[2015] for clustering (which is an unsupervised task like feature importance extraction in this work).
This shows that this work can be improved in terms of machine learning and optimization and also
engineering on real world data.

Indeed, computer vision in general and foreground/background unsupervised segmentation
(in the way we present it) in particular are ways to provide a better understanding between unsu-
pervised metric learning and feature importance extraction thanks to large cardinality datasets.
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