
L E A R N I N G R E P R E S E N TAT I O N S U S I N G N E U R A L
N E T W O R K S A N D O P T I M A L T R A N S P O RT

R É S E A U X D E N E U R O N E S E T T R A N S P O RT O P T I M A L
P O U R L’ A P P R E N T I S S A G E D E R E P R É S E N TAT I O N S

PA R WA R I T H H A R C H A O U I

D I R I G É PA R P R . C H A R L E S B O U V E Y R O N

O S C A R O . C O M – R E C H E R C H E E T D É V E L O P P E M E N T

U N I V E R S I T É D E PA R I S

L A B O R AT O I R E M A P 5 – U M R C N R S 8145
É C O L E D O C T O R A L E 386

S C I E N C E S M AT H É M AT I Q U E S D E PA R I S C E N T R E

T H È S E D E D O C T O R AT E N M AT H É M AT I Q U E S A P P L I Q U É E S

P R E S E N T É E E T S O U T E N U E À PA R I S , L E 8 O C T O B R E 2020

D E VA N T U N J U RY C O M P O S É D E

ERWANN LE PENNEC RAPPORTEUR PROFESSEUR ÉCOLE POLYTECHNIQUE

NICOLAS COURTY RAPPORTEUR PROFESSEUR UNIVERSITÉ BRETAGNE SUD

JULIE DELON EXAMINATRICE PROFESSEURE UNIVERSITÉ DE PARIS

LAURE SOULIER EXAMINATRICE MAÎTRE DE CONFÉRENCES SORBONNE UNIVERSITÉ

PIERRE-ALEXANDRE MATTEI EXAMINATEUR CHARGÉ DE RECHERCHE INRIA SOPHIA-ANTIPOLIS

ANDRÉS ALMANSA MEMBRE INVITÉ DIRECTEUR DE RECHERCHE UNIVERSITÉ DE PARIS

CHARLES BOUVEYRON DIRECTEUR DE THÈSE PROFESSEUR UNIVERSITÉ CÔTE D’AZUR

STÉPHANE RAUX CO-ENCADRANT RESPONSABLE DÉVELOPPEMENT R&D OSCARO.COM

L E A R N I N G R E P R E S E N TAT I O N S U S I N G N E U R A L
N E T W O R K S A N D O P T I M A L T R A N S P O RT

B Y WA R I T H H A R C H A O U I

S U P E RV I S E D B Y P R . C H A R L E S B O U V E Y R O N

O S C A R O . C O M – R & D

U N I V E R S I T É D E PA R I S

L A B O R AT O I R E M A P 5 – U M R C N R S 8145

Warith Harchaoui
Learning Representations using Neural Networks and Optimal Transport, © 2020

La pire chose qu’on puisse te dire
c’est que t’es intelligent.

The worst thing one can tell you is that

you’re intelligent.

A. Harchaoui to his son, 1991

A B S T R A C T S I N F R E N C H A N D E N G L I S H

R É S U M É E N F R A N Ç A I S

La dernière décennie a vu les réseaux de neurones devenir un outil de référence
dans l’apprentissage statistique. En effet, cette technologie s’est imposée comme
un outil essentiel pour des types de données aussi variés que les images, le texte,
le son, etc. dans des contextes à grande échelle. Les succès des réseaux neuronaux
s’étendent également à l’apprentissage par renforcement (jeux et robotique) et à
l’apprentissage non-supervisé (analyse et génération de données), avec notam-
ment une qualité inégalée pour l’imitation d’images avec les réseaux génératifs
adversaires. Néanmoins, les réseaux neuronaux restent difficiles à interpréter
en tant qu’estimateurs statistiques. L’objectif de cette thèse est d’atténuer cet
inconvénient et d’accroître encore la portée des réseaux de neurones grâce à trois
applications dites d’intelligence artificielle : (i) le partitionnement des données
en groupes (clustering) grâce à deux algorithmes qu’on propose, (ii) la recherche
des coordonnées pertinentes d’un signal avec une notion qu’on a baptisé « la pire
distance de Wasserstein » et (iii) la prédiction d’un résultat munie de l’estimation
d’une incertitude associée en revisitant et en étendant les méthodes connues.

À travers ces trois contributions, nous nous proposons de répondre à trois
questions sur les représentations : (i) Comment représentons-nous les objets
qui appartiennent aux groupes que nous essayons de former? (ii) Comment
représenter ce qui fait qu’un objet ressemble au reste des objets de son type?
(iii) Comment représenter une incertitude associée à une prédiction automatique ?
Ainsi, ce travail présente des moyens de s’éloigner de l’utilisation supervisée
classique du deep learning (le domaine de l’apprentissage statistique des réseaux
de neurones) avec la volonté d’interpréter ces mystérieuses « boîtes noires »
grâce à de nouveaux outils algorithmiques et statistiques. Nous avons veillé à ce
que notre utilisation des réseaux de neurones soit la plus interprétable possible
pour une meilleure compréhension des données en jeu, au-delà des décisions
automatiques.

Mots-clefs

Réseaux de neurones, apprentissage de représentations, partionnement de don-
nées (clustering), réseaux génératifs adversaires de Wasserstein, dualité de Kan-
torovich, transport optimal de Monge, modèle de mélange gaussien, modèles
génératifs profonds, auto-encodeur, estimation de l’incertitude

i

A B S T R A C T I N E N G L I S H

The last decade has seen neural networks become a reference tool in statistical
learning. Indeed, this technology has established itself as an essential tool for
data types as varied as images, text, sound, etc. in large scales settings. The
success of neural networks also extends to reinforcement learning (games and
robotics) and unsupervised learning (data analysis and generation) including
unparalleled quality for image imitation with generative adversary networks.
Nevertheless, neural networks remain difficult to interpret as statistical estimators.
The aim of this thesis is to mitigate this drawback and further enhance the scope
of neural networks through three so-called artificial intelligence applications:
(i) partitioning data into groups (clustering) thanks to a proposed algorithm,
(ii) finding the relevant coordinates of a signal with a notion that we dub “the
worst Wasserstein distance” and (iii) predicting a result while estimating an
associated uncertainty by revisiting and extending known methods.

Through these three contributions, we propose to answer three questions about
representations: (i) How do we represent objects that belong to the groups we are
trying to form? (ii) How do we represent what makes an object resemble its kind?
(iii) How do we represent an uncertainty associated with an automatic prediction?
Thus, this work presents ways to get away from the classic supervised use of
deep learning (the statisical learning field related to neural networks) with the
desire to interpret these mysterious so-called black boxes thanks to new algorithmic
and statistical tools. We tried hard to make sure that our use of neural networks is
as interpretable as possible for a better understanding of the data at stake, beyond
automatic decisions.

Keywords

Neural networks, representation learning, clustering, Wasserstein generative
adversarial networks, Kantorovich duality, Monge optimal transport, Gaussian
mixture model, deep generative models, auto-encoder, uncertainty estimation

ii

R E M E R C I E M E N T S

À mes amis,

iii

A C K N O W L E D G E M E N T S

To my friends,

iv

C O N T E N T S

ABSTRACTS IN FRENCH AND ENGLISH i

1 S TAT E O F T H E A RT 1
1.1 Introduction . 1
1.2 Machine Learning Landscape . 2

1.2.1 Dimensions . 3
1.2.2 Epistemology . 4
1.2.3 Different kinds of machine learning 4

1.3 Neural Networks . 9
1.3.1 Input Data . 10
1.3.2 Output Data and Functions Properties 13

1.4 Optimal Transport . 15
1.4.1 Formulations . 15
1.4.2 Algorithms . 16

1.5 Representations . 19
1.5.1 Big data and neural networks 19
1.5.2 The Curse of Dimensionality 21
1.5.3 Dimensionality Reduction 24

1.6 Dissertation Outline . 28
1.6.1 Clustering . 29
1.6.2 Unsupervised Feature Importance 35
1.6.3 Uncertain Predictions . 35

2 WA S S E R S T E I N C L U S T E R I N G 38
2.1 Introduction . 39

2.1.1 Related Work . 39
2.1.2 Model Selection . 41
2.1.3 Reparametrization Trick for a Mixture 42

2.2 Generative Wasserstein Clustering 42
2.2.1 Deep Generative Models for Clustering 43
2.2.2 Concatenation Trick . 46
2.2.3 Algorithm . 48
2.2.4 Model Selection for GeWaC 51
2.2.5 Collapsing Effects . 52

2.3 Discriminative Wasserstein Clustering 52
2.3.1 Wasserstein Distances between Clusters 54
2.3.2 Unormalized and Normalized sum of inter-Cluster Wasser-

stein Distances . 55
2.3.3 Estimating Wasserstein Distances with Deep Learning . . . 59

v

Contents vi

2.3.4 Algorithm . 60
2.3.5 Model Selection for DiWaC 62
2.3.6 Changing the Metric beyond the Euclidean Distance for

DiWaC . 64
2.4 Experiments . 65

2.4.1 Implementation details and experimental setup 65
2.4.2 Introductory Examples for Generative Wasserstein Clustering 67
2.4.3 Introductory Examples for Discriminative Wasserstein Clustering 68
2.4.4 Real Data Experiments . 71

2.5 Future Work and Conclusion . 74

3 U N S U P E RV I S E D F E AT U R E I M P O RTA N C E 77
3.1 Introduction . 78
3.2 InWaMaDi: Infinitesimal Wasserstein Maximal Distortion 78

3.2.1 A Simplified Case: Empirical Distributions 81
3.2.2 General Distribution Case 83

3.3 Optimization . 84
3.4 Algorithm . 87
3.5 Possible Computer Vision Applications 89
3.6 Future Work and Conclusion . 89

4 P R E D I C T I O N W I T H U N C E RTA I N T Y 90
4.1 Introduction . 91
4.2 Revisiting Deep Supervised Learning 93

4.2.1 Classification . 93
4.2.2 Regression . 94

4.3 HUM: Hypothesis for an Uncertainty Model 96
4.3.1 Uncertain Logistic Regression for Classification 98
4.3.2 Uncertain Least Square for Regression 99
4.3.3 Uncertain Mixtures for Regression and Classification . . . 100
4.3.4 Links with Other techniques 101

4.4 Algorithm and Practical Implementation Details 102
4.4.1 Safe Computations . 102
4.4.2 Re-Using Uncertainty-Free Models 103
4.4.3 Algorithms . 104

4.5 Experiments . 107
4.5.1 Synthetic data . 107
4.5.2 Dogs and Wolves . 110

4.6 Future Work and Conclusion . 113

CONCLUSION 114

APPENDIX: GENERATIVE ADVERSARIAL NETWORKS PRETRAINING 115

C O N T E N T S vii

B I B L I O G R A P H Y 121

C O N T E N T S

viii

1
S TAT E O F T H E A RT

1.1 I N T R O D U C T I O N

Through perception and experience, each human being gathers data all the time
and eventually process that data into representations that become our grasp
onto the universe for interacting. We represent ideas and concepts for think-
ing and language and even get pre-representations of things we do not know.
Although artificial intelligence has become a very popular expression, one can
remark that representation is a key prerequisite for any of processing that we
consider whether we talk about our intelligence as human beings our artificial
intelligence for automatic machines. On one side of the spectrum of possibili-
ties, excellent representations do not even require further processing and simple
decision mechanisms on raw data are enough for good results. On the other
side of the spectrum of possibilities, poor representations actually do require
sophisticated expert-based or advanced statistical processing to output good
results by taking into account domain-specific knowledge. During the 2010s,
some major technological obstacles were crossed allowing the development of
the so-called deep learning marked by the coming of a new era where the frontier
between representation and processing becomes very blurry.

In many machine learning fields, defining a clear and sound objective is always
key to produce good research but unfortunately, several so-called more intelligent
tasks are impossible to define that well which leads us in this dissertation in
statistics to insist on the statistical representation side rather than on the statistical
processing side. Therefore, our main subject is representation: (i) of data among
its groups in the first chapter, (ii) of data among its characteristics in the second
chapter and (iii) of predictions with uncertainty in the third chapter. At the
crossroads of three different fields namely statistics, deep learning and optimal
transport that recently gained much scientific attention, our effort leverages
that wealth of existing research to tackle representations in three contributions
with different contexts: Wasserstein Clustering (DiWaC and GeWaC) to identify
groups among data, Infinitesimal Wasserstein Maximal Distortion (InWaMaDi)
to highlight relevant characteristics of data and Hypothesis of an Uncertainty
Model (HUM) to estimate both supervised predictions and some uncertainty
information.

1

M A C H I N E L E A R N I N G L A N D S C A P E 2

1.2 M A C H I N E L E A R N I N G L A N D S C A P E

This dissertation focuses on neural networks (a. k. a. deep techniques) that enjoy
recent tremendous sucess as a technology but much of the current described work
is applicable to other tools like decision trees [Breiman, 2017] or kernel-based
methods [Andrew, 2001]. That being said, deep learning changed scientists tradi-
tions about data: usually researchers separated feature-extraction and automatic-
decision making tasks into two jobs. Nowadays, this frontier becomes merely a
blurred line as best systems are built by doing feature extraction and automatic
decision simultaneously along layers (hence the “deep” adjective as more layers
give more sophisticated systems). Mixing feature extraction and automatic deci-
sion in layers amplified by much more computation power than ever let neural
networks become fancy again. The whole machine learning scientific community
beyond those who uses neural networks refer to these low-financial-support
periods as “artificial intelligence winters”. In the 1990s and 2000s, even in a major
conference named Neural Information Processing Systems, popular methods like
kernel-based ones were more popular than neural networks at a time when the
keyphrase “deep learning” was merely confidential. As announced in the seminal
keynote at the International Joint Conference on neural networks in 2011, neural
networks were back again in the performance leaderboards top methods thanks
to recent hardware considerable computational improvements. Then, between
2011 and 2014, neural networks algorithms beat state-of-the-art records in several
fields such as image processing, computer vision, speech recognition, machine
translation with almost only artificial neural networks scientists and without
researchers from specific domain expertise as explained by Ng [2013] which gave
the surprising hope for an increasing ease in a growing list of applications.

During the last decade, a pleasing end-to-end paradigm emerged and says
that systems should not be trained sequentially (or even independently) but
rather simultaneously as a whole [Ng, 2018]. This intuitive belief that consists
in training several layers of a neural network at once is widespread for better
empirical results. Unfortunately, doing an end-to-end training also means dealing
with black boxes as intermediate neural networks layers that are difficult to
interpret (and are even not identifiable whereas other less efficient methods still
provide interpretation ease). End-to-end training seems to be encouraged for
better than other known styles of training empirically and especially in Deep
Learning [Bojarski et al., 2016].

Nevertheless, this statement must be handled with care for pragmatic reasons
beyond industrial scalability and loss of interpretable modularity as Glasmachers
[2017] points out there are also some other effects: feeding a deep neural network
with the concatenation of raw data and some non-deep-learning algorithms
outputs is often hard to beat. For example, in video recognition [Schmid, 2013,
Crasto et al., 2019], it is recommended to augment the raw video voxels input
with optical flow (which is a processed version of the same raw video pixels

M A C H I N E L E A R N I N G L A N D S C A P E 3

but for motion estimation). Indeed, because of the data starvation phenomenon
(a. k. a. over-fitting), using off-the-shelves pretrained algorithms is a simplistic
form of transfer learning combining knowledge (and sometimes data) from the
current and from the previous tasks. Thus, pragmatically, it is sometimes useful
not to follow the end-to-end-training approach just for the sake of it: sequentially
trained and/or optimized modules can work very well and still provide the
easiest interpretation for what each module does. One too naive end-to-end-
training approach would end up with a black box trained from scratch.

In this dissertation, there is a will to emphasize our scientific need to crack
in deep learning black boxes (end-to-end or not) because that’s how better data
understanding gets in, beyond automatic decisions.

1.2.1 Dimensions

In this dissertation, we will consider large scale settings so we must be specific
about what is considered large. Throughout the machine-learning-related fields,
we can consider:

C A R D I N A L I T Y N, the number of data points for train;

D I M E N S I O N A L I T Y D, the dimensionality of one data point;

O U T P U T D I M E N S I O N K, the dimensionality of the automatic output decision
(number of classes in classification, the output space dimension for regres-
sion and beyond, the approximate number of nodes in a grammar tree, or
number of atoms of a chemical molecule graph...).

as emphasized by Harchaoui [2013] in the concept of machine learning cuboid. For
each edge of this cuboid, we have direct optimization implications for feasible
computations and best results so far:

• N ≫ 1 stochastic-gradient-based optimization algorithms are more suitable
than in-memory alternatives because we only need a few data points (mini-
batches) at the same time per iteration;

• D ≫ 1 some further analysis should be conducted: dimensionality re-
duction and domain-specific knowledge must be used at once for fighting
against the curse of dimensionality phenomenon;

• K ≫ 1 one-class-vs-rest strategies are preferred rather than one-class-vs-one
strategies for computational reasons. Indeed in a one-class-vs-rest strategy,
we only need to combine K decisions separating each class with all the rest
whereas in a one-class-vs-one strategy, we would have K×(K−1)

2 decisions
separating all combinations of classes pair.

M A C H I N E L E A R N I N G L A N D S C A P E 4

Throughout this work, we are mainly interested in large N and large D data
configurations without considering large K issues. For example, in clustering
settings, K should be small because otherwise it defeats the data analysis pur-
pose: having too many clusters does not help human beings to understand data.
Although the large N and large D case has already been successfully investigated
in the supervised classification context, at the beginning of this work (in 2016)
little research had been conducted but we observe that this key preoccupation is
finally entitled to scientific attention today.

Along these three dimensions of data analysis in machine learning, this Ph.D.
dissertation proposes new (or revisited) representations: (i) simplifying the car-

dinality axis of N thanks to clustering in our first contribution, (ii) an attempt
to better understand data at a coordinate level for a local dimensionality axis of

D relevance assessment in our second contribution, and (iii) re-interpreting the
output axis of K through uncertainty estimation in our third contribution.

1.2.2 Epistemology

Epistemology is the theory of knowledge [Newman, 2018, Ahmad, 2003]. In
particular, in machine learning, one epistemology has consequences on our be-
liefs, opinions, justifications and finally our scientific methodology in our studies.
Several epistemological ways to describe machine learning exist and for this
dissertation we choose one with probabilistic perspectives [Murphy, 2012] be-
cause of its ease of sophisticated interpretation for insights. We believe data is
coming from a phenomenon that we call Nature that we represent by an idealized
probabilistic distribution associated with a random and often multivariate vari-
able (or a pair or a tuple of this random multivariate variables). In practice, we
consider datasets as extracts of Nature. An (annotated) dataset is some collection
of independent realizations that are identically (sampled) distributed from what
we call Nature. Of course, this statement is falsifiable [Bernard, 1898] and maybe
counter-intuitive but computer science, statistical learning, machine learning,
data science and all these young sciences mixing mathematics and programming
are just a few decades old, compared to more established several centuries old
(or even millenia old) fields such as mathematics, biology, physics, chemistry,
medecine etc.

Mathematically, it is convenient to choose that epistemology (rather than an
other one) in order to introduce the notion of generalization capabilities of ma-
chine learning systems. Indeed, with other epistemology, datasets have a higher
status and generalization becomes ill-defined (with the ad hoc notion of training
error and testing generalization error). In this work, we accept that datasets
empirical distributions (sum of Dirac distributions) are approximated and noisy
versions of an idealized (probably smoother) distribution.

M A C H I N E L E A R N I N G L A N D S C A P E 5

1.2.3 Different kinds of machine learning

Generally, for a given project, the job of a machine learning scientist (or data
scientist depending on the name given by economic trends) is decomposed in
two phases often in a loop: (i) training time (previous to or interleaved with a
validation time) to match/imitate/reproduce the phenomenon in the presence of
groundtruth information (labels, reward) for learning a model, (ii) test time (or
execution time of the system we have just built) without access to groundtruth
information because we are using our trained model. Following pioneers in
machine learning [LeCun, 2015], we can roughly separate the machine learning
landscape in three depending on what is accessible during training, validating
and testing times: first supervised learning, second unsupervised learning and
third reinforcement learning as this dissertation can find applications in all of
these three machine learning fields.

For the purposes of notation, univariate functions are here generalized to the
multivariate case by applying the associated univariate function to each entry
and then concatenating everything such that the function output has the same
shape as the input. For example, z ∈ R

K is a vector whose K ∈ N
∗ coordinates

z(k) are indexed by k, then log(z) =
[

log(z(1)), . . . , log(z(k)), . . . , log(z(K))
]⊤

.

Supervised Learning

Nature provides a pair of (input, output) random variables (x, y).

(x, y) ∼ Nature (1)

collected in a training labelled dataset (or Nature extract as stated above):

dataset = (x1, y1), . . . , (xi, yi), . . . , (xN, yN) (2)

where each (xi, yi) is a realization of (x, y) ∼ Nature

On the one hand, input x often represents a question in various forms such as: a
vector of numbers (categories, integers or floating decimal numbers), an image
or a video (made of pixels, voxels in channels and beyond [Ponce and Forsyth,
2011]), a sound (its waveform or its time-frequency representation [Li et al., 2016,
Mallat, 2008]), a gene (its ATGC or RNA-seq representation [Barillot et al., 2012]),
a chemical molecule (its 3D graphical representation [Zaslavskiy, 2010]) etc. On
the other hand, output y represents the answer of the question x in two main
classes of problems: regression in which we deal real numbers and classification
dealing with categories and integers. Of course, these kinds of separations are
limited but somewhat useful to describe the main problems.

Many supervised learning problems share the same kind of optimization
objective:

min
F

E(x,y)∼Nature
(

ℓ
(

y,F (x)
))

(3)

M A C H I N E L E A R N I N G L A N D S C A P E 6

where ℓ
(

y,F (x)
)

measures the discrepancy of predicting F (x) from an input
x instead of the ground truth label y. This equation Eq. (3) behaves like an
aggregation of errors (when y 6= F (x)) summed up into one value (the lower,
the better) over data. In layman’s terms, ℓ(y,F (x)) is how much the system is

punished for a mistake during training and is preferably zero for no error: a perfect
y = F (x) scenario. More precisely, statistical learning becomes the task of finding
parameters θ = θF of function F that has the right structure (tree, random
forest, linear or kernel-based support vector machines, neural networks etc.) that
minimizes L:

minθF L(θF) (4)

L(θF) = E(x,y)∼Nature
(

ℓ
(

y,F (x)
))

Indeed, the formulation of Eq. (4) has the merit of generalizing almost all super-
vised learning problems.

Beyond the scope of this dissertation, there is a considerable amount of sci-
entific works about regularization notably inherited from Lagrangian optimiza-
tion [Boyd and Vandenberghe, 2014] and similar techniques. In a nutshell, our
Eq. (3) is still valid to fit in this kind of research by simply replacing the current
function ℓ by function ℓ̃:

ℓ̃(y,F (x))
a
= ℓ(y,F (x)) + λΩ(F) (5)

where Ω gives the predictor function F some desirable properties (see the books
of Bonnans et al. [2003] and of Boyd and Vandenberghe [2014] for further details)
with a relative importance given by λ ∈ R+ in order to provide generalization
capabilities coping with the fact that we only have access to a limited training
dataset instead of Nature itself in practice.

In summary, supervised learning is finding a function F that maps x to y

based on a training dataset assuming that such an idealized function F ∗ exists
(sometimes we only need F ∗ to only be a relation and not necessarily a function):

y ≃ F ∗(x) (6)

In order to build an estimator F̂ of the desired decision function F ∗, we usually
solve an optimization problem:

F̂ = min
F
L(F) (7)

where the loss function L is a proxy of all errors that we want to ideally minimize
in one value L(F) measuring all aggregated discrepancies between the ground
truth y and prediction F (x).

In practice, we only have access to a limited amount of annotated (x, y) data
that we call training data to fit our prediction function F̂ , so the L(F)s are

M A C H I N E L E A R N I N G L A N D S C A P E 7

estimated by approximations ˆL(F) as if the available data was all the data in the
universe: almost as if the Nature smooth distribution was replaced by the dataset
empirical distribution. The hope consists in saying that at test time, for a new
and unseen input x coming from the same (x, y) distribution as in training time
but where the true output y is unknown, we can predict an estimated output
ŷ = F̂ (x) that is close to the true output y.

Learning is possible because at training time, we have access to both the input
x and output y in a dataset. Back to our philosophical considerations about
epistemology, we may consider that the supervised learning task consists in
compressing the relationship between the training pairs (x, y) in a fitted predictor
F̂ that once trained, one only needs x to recover a lossy version of y ≃ F̂ (x).
During the “compression process of learning” we accept some loss in information
that we sacrifice to get better compression rate in general non-lab conditions. This
way, we can study many machine learning tools such linear dot products, tree,
random forest of trees, non-linear kernel evaluations, vanilla neural networks,
convolutional or recurrent neural networks etc. and their respective algorithms,
computations and structures with the same compression-flavored point of view.

In supervised learning we have:

x and y at training time
x without y at testing time that we estimate

Looking at supervised learning as a compression problem is interesting for under-
standing recurring trade-off through out this scientific literature: models should
be sophisticated enough to recover outputs information from inputs without too
much loss of information (complexity and number shoud go up) while still being
sufficiently sober (i. e. not too sophisticated,(complexity and number goes down)
otherwise generalization capabilities dramatically drop down while compression
is given up.

Unsupervised Learning

In unsupervised learning, Nature does not provide any more information than
the data x itself.

x ∼ Nature (8)

This machine learning field is useful for data analysis that has more broader
scientific purposes than the industrial applications of supervised learning.

x without any labeled y information that we still estimate to get
structure from data for the sake of interpretable knowledge discovery

Imitating data (Generative Adversarial Networks GANs for example) [Goodfel-
low et al., 2014] and clustering [Jain, 2010] are two unsupervised learning tools to
exhibit data analysis as a fundamentally intelligent tool for scientists, intelligent

M A C H I N E L E A R N I N G L A N D S C A P E 8

etymologically meaning from latin understanding the underlying structure of
data. Unsupervised learning is often ill-posed which remains a mystery because
the same automatic tasks can be evaluated subjectively many times by differ-
ent human beings with still some consistency (e. g. for clustering) which gives
hopes for improvements. More mathematically, indeed, we use the Hadamard
definition [Maz’ya and Shaposhnikova, 1999] for a well-posed problem and
we understand that all these three points cannot apply in clustering objectives
optimization:

1. a solution exists,

2. the solution is unique,

3. the solution’s behaviour changes continuously with the initial conditions.

In this dissertation, clustering is tackled in a chapter as the computation of
the maximal optimal transports between groups (e. g. clusters) while leveraging
the GANs scientific literature in terms of numerical tools. Furthermore, another
chapter is trying to make use of enhanced Wasserstein distance among distribu-
tions for relevant features weighting of data without explicit supervision from
any task but rather the likeness of each point with the remaining dataset points
that we express with the notion of worst optimal transport once again thanks to
its powerful mathematics and algorithmics machineries.

Reinforcement Learning

Reinforcement Learning [Sutton and Barto, 2018] is an area of machine learning
about how agents (say robots) sequentially observing environment inputs x from
Nature could take the best sequence of actions y in order to maximize some
untimely reward r also given by Nature and not necessarily after each action
while maintaining a state representation s (or z) of both history and environment.

(x, r) ∼ Nature, but r is not always given (i. e. we often have r = 0) (9)

For example, playing automatically chess, Go, cards are famous applications
associated with artificial intelligence victories in controlled settings face to expert
human beings.

In unsupervised learning, we have:

x but no supervised action y is given, only some reward r once in a
while during training time

x with some reward r once in a while at testing time and we estimate
the best sequence of actions y

In reinforcement learning, taking into account uncertainty estimation is cer-
tainly helpful for the distentangling the recurring exploration / exploitation
dilemma [Sutton and Barto, 2018]. This opens up a potentially large range of
possible applications for our contribution dealing with uncertainty.

N E U R A L N E T W O R K S 9

1.3 N E U R A L N E T W O R K S

Since their introduction in computer science [Rosenbaltt, 1957], artificial neural
networks loosely inspired by the biological neurons did not stop fascinating
researchers until today. In a nutshell, a neural network implements a func-
tion F from R

D to R
K by the composition of L ∈ N

∗ layers (or sub-functions)
(Fℓ)ℓ=1,...,L) of the form:

(∀ℓ ∈ J1, L− 1K) Fℓ = a ◦ Linearℓ (10)

FL = LinearL

where:

• The non-linear element-wise function a called activation is often chosen
among the hyperbolic tangent function, the positive part function (or recti-
fied linear unit ReLU), the sigmoid function (or logit function).

• The Linearℓs functions are matrix-vector product linear operators in the
form of:

(∀x ∈ R
iℓ) Linearℓ(x) = Mℓx + bℓ (11)

for Mℓ ∈ R
oℓ×iℓ and bℓ ∈ R

oℓ with (iℓ, oℓ) ∈ N
∗ ×N

∗ and (∀ℓ ∈ J1, L−
1K) oℓ = iℓ+1 (i1 = D and oL = K)

Thanks to the universal approximation theorem of Hornik [1991], we only need
mild conditions on a (unbounded and non-constant) for the set of functions
expressed in this form to be dense over the set of Lebesgue-integrable functions.

This means that each time, we have an objective function to minimize over a set
a function, there exists a neural network F that is able to approximate the optimal
solution arbitrarily well. In terms of computer science, this is good news because
instead of minimizing over a set of functions, we can reasonably minimize over
a set of parameters approximating that function we are looking for. Thus, we
transformed a functional optimization problem into a numerical optimization
problem over the matrices Mℓs, the biases bℓs but also the number of layers L

and the input/output parameters (iℓ, oℓ). The initial enthusiasm provoked by
this statement was dampened through decades because this is only an existence
theorem that does not provide a way in itself to find these parameters. Moreover
it turns out that the statistical estimation of these parameters is difficult due to
the over-fitting phenomenon [Scholkopf and Smola, 2001] (a. k. a. data starvation

which is a complementary metaphor). Optimization is also slow (especially in
the 1960s, 1970s, 1980s and even 1990s compared to nowadays).

Recently, neural networks became suddenly more plausibly useful since stor-
age and computations were getting much faster and cheaper. Indeed, on top
of a dramatic computational speed improvement, fast random data access is

N E U R A L N E T W O R K S 10

also crucial for realistic real-world applications. During the 1990s, even with
industrial-level quality results, scientists in neural networks for machine learning
did not catch the whole Research community world wide attention at first. As
data storage and collection problems have been nicely solved thanks to the de-
crease of hardware’s costs (and thus the increase of available computational
power especially with the rise of CPUs and GPUs parallelism and distribution),
increase of data access speed and software solutions (like HDFS [Shvachko et al.,
2010] and Spark [Zaharia et al., 2010]) that all appeared in an era around the
2000s called Big data. In the 2010s, these tools for manipulating data were key
for large-scale training and execution of machine learning engines [Castelluccio,
2017]. Another factor of scientific success is the extensive use of world-wide open
source repository which pioneered in terms of reproducibility and best practice
sharing. On the theoretical part, the mild conditions of the universal approxi-
mation theorems [Cybenko, 1989, Hornik, 1991, Gao and Jojic, 2016] only gives
approximation ability up to our statistical estimation ability (hence the need of big
cardinality datasets compared to dimensionality). Otherwise, neural networks
notoriously suffer from data starvation (a. k. a. overfitting) and the neural net-
works need appropriate structures, computations and optimization procedures to
inject enough knowledge into the systems in order to get the tremendous sucess
we benefit today. Still, in spite of these recent and great improvements, there is a
lack of solid theoretical grounds (especially compared to its Reproducing Kernel
Hilbert Space RKHS counterpart) and many open questions remain unanswered
as of today although we can mention the works of Vidal et al. [2017] and Arora
et al. [2017].

1.3.1 Input Data

Thanks to the universal approximation theorem presented previouly, it is rea-
sonable to parse several kinds of input data to see how neural networks can be
fed. Indeed, neural networks universal approximation theorems do only provide
an existence result of a desired function but no explicit way to get or estimate it.
Even with this important theorem, scientists sill have to work to build an ade-
quate deep learning structure to cope with the estimation problem of an almost
unreachably ideal neural networks parameters. Even if we had a procedure that
could reach that ideal neural networks, this would be fitted on training data only
which is not a guarantee for good results on unseen yet data.

Historically [Rosenbaltt, 1957], input data x ∈ R
D is a vector fed to a function

implemented by a one-layer perceptron: a composition of a matrix-vector product
and an element-wise sigmoid function. At the same time, stochastic optimization
tools were revisited, implemented for large scale settings with the associated
theoretical background provided by the Robbins-Monro theorem [Robbins and
Monro, 1951] (we will come back on it later). The idea of composition for more
sophisticated neural networks came fast with the introduction of multilayer

N E U R A L N E T W O R K S 11

perceptron [Rosenblatt, 1961] along with the back-propagation algorithm which
gracefully adapts the differenciation chain rule for efficient algorithms (the forward

step is the evaluation of the neural network function and the backward step is the
computation of its gradient with respect its parameter). Nowadays, thanks to
much engineering progress, more and more artificial intelligence promises are
kept.

Since the dawn of the 1990s, new kinds of information media became available
on computers storage systems with increasing sophistication and some dramatic
research-to-product type of improvements emerged:

T E X T Word processor softwares rapidly replaced typewriters and made nat-
ural language processing possible and one can cite the old Reuters text
dataset [Hayes and Weinstein, 1990] for example. In terms of artificial in-
telligence, it seems that this medium along with genetics data are the most
difficult one;

I M A G E Likewise, digital recording of photographs made the singleton dataset
of Lena [Roberts, 1962] in image processing grow from only one to several
thousands images size datasets with MNIST [LeCun et al., 1989b] and to
millions images size datasets such as ImageNet [Fei-Fei, 2010] and beyond.
The associated tremendous research progress made possible real-world
applications in everyday applications;

S O U N D Early speech recognition systems also benefit from datasets collection
since one of the oldest: TIMIT [Zue et al., 1990], even the music processing
got its own MusicNet dataset [Thickstun et al., 2018];

V I D E O the recent 2018 YouTube 8 millions videos dataset [Abu-El-Haija et al.,
2016] seem promising for same kind of quantitative-qualitative upward gap
and improvements as image in a near future.

There is an interesting hypothesis to maybe understand why the text medium
is so hard to manipulate within statistical frameworks compared to the other
ones although it has been the first to be digitized with enormous ever-growing
quantity data: close features in the other media are more clearly dependent (two
neighboring pixels in images and even voxels in videos are highly dependent
like consecutive sound samples are) and this dependence fades away with longer
horizons but unfortunately text features (words or even letters) have stronger
and longer range interactions that suggests to see them through grammar in spite
of the scientifically obsolete and harmful but widespread saying from Frederick
Jelinek in 1985:

“Every time we fire a phonetician/linguist, the performance of our
system goes up.”

N E U R A L N E T W O R K S 12

Combining strong statistical tools and linguistics is probably the best alternative
for future natural language representations.

For all these different media (or information supports), a major research pattern
can be analyzed: most data contain redundant information so discarding stut-
tered information is useful in order to manipulate the relevant infortmation only.
For example, spatial data like images, have highly dependent close pixels and
thus intuitively small-sized convolution kernels seem appropriate to decorrelate
the redundant information. Another example is sequence data or smooth time
series data where neighboring data (with respect to the sequence or temporal
axes) should also be decorrelated thus 1D-convolutions [Zhang et al., 2015] or re-
currence seem appropriate as much as recurrent neural networks can [Murakami
and Taguchi, 1991, Hochreiter and Schmidhuber, 1997] as described in Fig. 1.

Figure 1: Several input/processing/output scenarios from standard
neural networks to recursive ones. Red: Input, Green: Pro-
cessing, Blue: Output. From left to right: one (input) to one
(output) vanilla neural network, one to many like in image
captioning (one image to many words in a sentence), many
to one like in sentiment analysis (many words in a sentence
to a category of mood), and the (delayed or not) many to
many case like in langauage translation (many words of a
sentence in one language to many words of a new sentence
in a different language). Diagrams taken from the pedagogi-
cal blog of Andrej Karpathy: http://karpathy.github.io/

2015/05/21/rnn-effectiveness/

This huge research effort allowed for large scale applications (both in terms of
training size or cardinality N and data size or dimensionality D and in the end
the output size K). Meanwhile, image and sound processing were increasingly
developping methods using convolutions when LeCun et al. [1989b,a] applied
those convolutions for image classification with both iterated compositions and
backpropagation which turned out to be also useful for sound and even text pro-
cessing [LeCun and Bengio, 1995]. For time series, there is still a scientific debate
among the deep learning community about whether recurrent or convolutional
neural networks (which abreviate to RNN and CNN respectively). Meanwhile
the sequential nature of words enumeration in text is tackled as time series but
there is probably more hidden structure yet to get from grammar (as pioneering
work from Socher et al. [2011] pointed out since 2011).

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

N E U R A L N E T W O R K S 13

These combined breakthroughs allowed ambitious real-world applications
throughout the 1990s and the 2000s. Today, new constibutions with improved
engineering, structure, optimization and regularization tools are still referring
to early works with even homage (e. g. GoogLeNet by Szegedy et al. [2015]
referring to LeNet by LeCun et al. [1989b]). Image and Speech recognition is
embedded in many everyday products, even video recognition begins to have
reliable industrial applications. Natural language processing also gets impressive
translation results1 but there is still room for improvements. For all these different
media, it seems that the same phenomenon occurs: unleashing clean dataset with
thorough engineering effort astonishingly helps the scientific community to bring
back high quality prototypes and ultimately products. Indeed, if we measure the
time delay between a dataset release and available products and the best example
is the AdaBoost implementation for face detection with Haar features (MIT-CMU
frontal faces dataset [Sung et al., 1998] and prize-wining paper [Viola and Jones,
2001] less than 3 years after). In computer vision, the same phenomenon occured
with more and more available large cardinality datasets and thus ready-to-use
products as Fig. 2 shows.

Lena
(1971)

MNIST
(1989)

Caltech 101
(2003)

ImageNet
(2010)

Google's
 Open Images

(2019)
Famous Image Datasets

 0

 106

 2 × 106

 3 × 106

 4 × 106

 5 × 106

 6 × 106

 7 × 106

 8 × 106

 9 × 106

107

Ca
rd

in
al

iti
es

1 7 × 104 3 × 105

3 × 106

9 × 106

Figure 2: Images Datasets Explosion

1.3.2 Output Data and Functions Properties

Now we present a table of tips to adapt unconstrained vanilla neural networks
functions to constrained custom ones without the need of tediously maintain-
ing the constraints (which is not recommended for stochastic gradient descent
optimization, the weapon of choice to face large scale datasets according to the
neural networks literature [LeCun et al., 1998]).

1 https://www.deepl.com/press.html

https://www.deepl.com/press.html

N E U R A L N E T W O R K S 14

Mathematically, the universal approximation theorem allows to parse a very
large class of function (more precisely we only need the Lebesgue-integrability [Hornik,
1991]):

x ∈ R
D and F (x) ∈ R

K (12)

and Table 1 enumerates many kinds of functions and their corresponding im-
plementations thanks to the unconstrained original neural network function
F .

Property Implementation

Positivity exp(F (x)) or F (x)2 or even max(0,F (x))

Boundness between m and
M (m < M)

m + (M−m)σ(F (x)) where σ(z) = 1
1+exp(−z)

which
is related to the SoftMax function when K = 2

Probability Vector (i. e. in
K-dimensional simplex)

SoftMax(F (x)) where SoftMax(z)k =
exp(zk)

∑
K
ℓ=1 exp(zℓ)

which is related to the multilogit model [Hastie et al.,
2005] and the logsumexp trick

Positivity and
(semi)-definiteness matrix

C(x)× C(x)⊤ where C(x) is a lower triangular free
matrix with positive diagonal entries (even bounded
for more stability in practice) which is related to the
Cholesky decomposition [Golub and Van Loan, 2012]

1-Lipschitz function

Online power iteration on each matrix-vector product
inside the neural network that implements the
function F which is described in the spectral
normalization work by Miyato et al. [2018]

Bijection (one-to-one
function)

Composition of layers such as
[

x⊤[:d],
(

s(x[:d])× x[d:] + t(x[:d])
)⊤
]⊤

(with pythonic

indexation of coordinates) where s and t are regular
neural network functions. This technique also gives to
the log-determinant of the Jacobi matrix without too
much computation burden thanks to the original
paper of Dinh et al. [2017]

Recursive Function

If t is time and y0 an initialization:
yt+1 = G(yt,F (xt)) which is pedagogically well
presented by Karpathy [2015] and Chakraborty et al.
[2014] with improved LSTMs variants by Hochreiter
and Schmidhuber [1997] and GRUs [Cho et al., 2014]

Table 1: Implementations for several types of Functions with respect to
their inputs nature and functional properties

O P T I M A L T R A N S P O RT 15

1.4 O P T I M A L T R A N S P O RT

The optimal transport research field has proven to be crucial in redefining our
modern world as we know it, across a stunningly wide range of applications,
since its French birth in the XVIIIth century [Monge, 1781], with scientists from
very different backgrounds and application areas such as Rabin et al. [2012]
in image processing, Courty et al. [2017] in near-general data domain adap-
tation, Abouchar [1970] for airports management, decisive World War II mili-
tary battle victories [Smolinski, 1962], breakthrough innovation in modern econ-
omy [Galbraith, 2019] and flabbergasting futuristic industrial revolutions such
as semi-automatic objects generative design [Shu et al., 2019]. After this long
one-sentence celebration, we now briefly review the basics of such a prolific
mathematical offspring.

1.4.1 Formulations

In a data space X equipped with a metric c, we want to measure a distance
between two piles of data that is related to that metric. We are willingly using
the vague word pile because thanks to the notion of Dirac distibutions we have
access to both smooth densities, empirical distributions and a wide variety of
distributions in general. Mathematically, we thus manipulate two distributions µ

and ν with associated two variables x ∼ µ and y ∼ ν both living in X . On those
distributions, we want to compute the quantity Wc(µ, ν) measuring how much
different the piles µ and ν are. To that end, three equivalent formulations exist for
that same quantity:

M O N G E F O R M U L AT I O N

Wc(µ, ν) = inf
T∗(µ)=ν

Ex∼µ

[

c (x, T(x))
]

(13)

where T∗(µ) denotes the push forward of µ by transport map T. For real
understanding, we refer the reader looking for details to academic textbooks
on Probability such as Random Measures, Theory and Applications [Kallenberg,
2017].

WA S S E R S T E I N F O R M U L AT I O N

Wc(µ, ν) = inf
γ∈Γ(µ,ν)

E(x,y)∼γ

[

c (x, y)
]

(14)

where Γ(µ, ν) denotes the set of couplings γ based on the two distributions
µ, ν: the collection of all probability measures on X ×X with marginals µ

and ν in order to maintain two coupling properties:

∀y ∈ X , Ex∼µ [γ(x, y)] = ν(y) (15)

O P T I M A L T R A N S P O RT 16

and

∀x ∈ X , Ey∼ν [γ(x, y)] = µ(x) (16)

K A N T O R O V I C H - R U B I N S T E I N F O R M U L AT I O N (for the L2 euclidean distance
cost: c(x, y) = ‖x− y‖2)

W(µ, ν) = sup
C∈Lip-1

Ex∼µ [C(x)]−Ey∼ν [C(y)] (17)

where Lip-1 is the 1-Lipschitz functions set (from X ⊂ R
D to R). More

general formulas exist in Real analysis and Probability by Dudley [2018],
but changing the euclidean distance cost is possible up to how difficult
redefining the Lipschitz property of C is.

As a scientist apprentice, one can notice that for producing research work, it
seems that the Monge formulation is more amenable to intuition, the Wasserstein
formulation is more suitable for probabilistic and geometric perspectives and the
Kantorovich-Rubinstein formulation is more convenient for devising algorithms
thanks the decoupling of µ and ν in the formulas which makes computations
easier (simple expectations that a usual Monte Carlo estimation can handle).

1.4.2 Algorithms

Since the middle of the XXth century, three major algorithmical tools emerged:

1. Hungarian Discrete Method [Kuhn, 1955]

2. Entropy-Regularized Sinkhorn Fixed-Point Method [Cuturi, 2013, Genevay,
2019]

3. Wasserstein Generative Adversarial Networks [Goodfellow, 2016]

but we are well aware that with a certain amount of pragmatism it is beyond the
scope of this humble state of the art to present the great mathematical achieve-
ments in optimal transport. Daring to write a summary of such a huge math-
ematical and on-going research field is unsettling and we refer the reader to
three great references for best and rather exhaustive optimal transport overview:
(i) Optimal Transport for Applied Mathematicians by Santambrogio [2015] on the
general scientific culture side, (ii) Computational Optimal Transport by Peyré et al.
[2019] on the statistical and programming side, (iii) Optimal Transport: Old and

New by Villani [2008] on the probabilistic and theoretical side.
Historically, Kuhn [1955] found a cubic complexity algorithm to solve an

optimal transport in the discrete case which was internationally widespread as the
so-called Hungarian Method. Linear cost optimization of one-to-one assignments
between two sets of elements is reccuring in many real-world applications as

O P T I M A L T R A N S P O RT 17

briefly enumerated above. Indeed, once a pairwise assignment cost matrix is
given, minimizing the associated cost sum with respect to the best possible
assignment map boils down to the ticking of one matrix entry per row and per
column (with some additional dummy entries for coping with the rectangular
matrix case i. e. different cardinalities for the two sets at hand). Beyond this
seminal successful attempt to cast optimal transport as a linear problem, some
other works pushed the analysis further with network flows [Ahuja et al., 1989],
with graph theory angle [Goldberg and Tarjan, 1989], then Dynamic Programming
mixed with fluid mechanics reasoning came in with Benamou and Brenier [2000]
for improved computational speed. Special discrete-continuous distributions
cases were also efficiently tackled by Mérigot [2011] with some exceedingly fast
convergence thanks to Lévy [2015]. First in industrial logistics, these approaches
were used in a surprisingly wide range of applications from e. g. worker to work
assignments, airplane to airport assignments, to communication protocol load
balancing systems etc.

Recently, Cuturi [2013] revisited entropy regularized transport to efficiently
solve almost the same optimal transport problem with the Sinkhorn iterative
fixed-point-type algorithm, which is especially handy when polynomial complex-
ity is not realistic in large scale settings. The idea is that they are willing to trade
some approximated optimal transport due to transport entropic regularization
for realistic speed and doable computations. Surprisingly, even exploiting the
entropy-regularized properties of the Sinkhorn (and thus non-optimal) transport
itself has value in many applications such as robust finance [De March, 2018],
ranking [Vert], photo album summarization [Liu et al., 2020]... This is explainable
because traditionally, regularizations schemes are meant to make numerical and
stability problems vanish. That fixed-point Sinkhorn theorem gives extremely
fast convergence rate of transport entropy regularized over Wasserstein distances
computations: less than a dozen of iterations are enough in practice. This ap-
proach on top of dramatic computational accelerations makes it indispensable
both for theoretical analysis and for many real-world applications. In spite of
diligent progress for Wasserstein Generative Adversarial Networks (as we will
describe later), the work accomplished by Genevay [2019] still presents Sinkhorn-
based techniques as a great mathematical and numerical alternative for efficient
optimal-transport-related solutions in machine learning.

In order to imitate high dimensional data, the principle of the milestone work
of Goodfellow et al. [2014] about Generative Adversarial Networks (GAN) is
prototypically new for a fascinating worldwide series of research papers. As
illustrated in Fig. 3, from a pseudo-random generator, we can sample some low
dimensional noise that is transformed thanks to a variable generator function to
get generated data within the original data space. The role of the critic function
is to estimate a divergence between the real data and the generated data distri-
butions and the generator’s role is to minimize it. The most common metaphor
for this mainstream press acclaimed technique is considering the generator as a

O P T I M A L T R A N S P O RT 18

forger trying to fool the detective embodied by the critic within an adversarial ob-
jective. The detective wants to distinguish generated and real data and the forger
wants to produce generated data that are indistinguishable when compared to
real data. More mathematically, it turns out that there is indeed a link between
that min-max optimization and a Nash equilibrium as emphasized by Fedus et al.
[2017].

R
D

R
d

Critic

Real Data

Generator

Code Space Data Space

Generated Data

Noise

Figure 3: GAN Principle: Imitating Data thanks to some Artificial
Low Dimensional Noise in Purple from a Code Space (Rd)
transformed thanks to a Generator function (or forger) into
Generated Data in Red living in the Data Space ((RD)) so
that they are supposed to be close to the Real Data in Blue
thanks to the Critic function (or detective) – Adapted from
https://optimaltransport.github.io

Following the seminal Generative Adversarial Networks (GANs) work of Good-
fellow et al. [2014], Arjovsky et al. [2017] used the Kantorovich-Rubinstein formu-
lation in order to imitate data extending GAN from Jensen-Shannon divergence
minimization to Wassertein distance minimization between generated and real
data distributions which paves the way for revisiting optimal transport in the
context of unsupervised learning. Answering the high research expectations for
GANs, the recent contribution of Miyato et al. [2018] called spectral normaliza-
tion had a tremendous impact. Indeed, revisiting the power iteration numerical
recipe [Press et al., 2007] at each linear or convolutional steps to elegantly enforces
the Lipschitz property required by the Kantorovich-Rubinstein duality allows
variation constraints withtout unstable stochastic gradient projection techniques
beyond Wasserstein distances and optimal transport. Until the spectral normal-
ization technique, neural networks had a tendency to implement function that are
not regular and enforcing the Lipschitz property (i. e. constraining the variations
of the functions implemented this way) gives a beneficial regularization effect
beyond Wasserstein distance estimation.

https://optimaltransport.github.io

R E P R E S E N TAT I O N S 19

This spectral normalization technique gave so much optimization stability that
facing unheard-of large scale settings is made possible and provides the extraor-
dinary images imitation results of the BigGAN approach [Brock et al., 2019]. This
engineering achievement is also convincing thanks the already-mastered residual
convolutional neural networks [He et al., 2016] ResNet tool coming from the
supervised image classification research. As a matter of fact, it is fair to say that
ResNet [He et al., 2016] gave the fascinating ability to neural networks of han-
dling recursively raw, moderately pre-processed and highly pre-processed data
at each layer by short-cutting the traditional successive-layers structure thanks
to additional cross-layer connections. All combined, it made BigGAN [Brock
et al., 2019] impressive rendering results possible, neatly fighting against the
curse of dimensionality effect on the learned parameters side confronted with
exceedlingly large scale unsupervised conditions for both data cardinality N

(number of images in the dataset) and dimensionality D (number of pixels for
the image high resolution) under unsupervised conditions.

1.5 R E P R E S E N TAT I O N S

Knowing how to represent data is understanding data and the underlying struc-
ture beneath it (and vice versa). As is, data has in general too much dimensionality
to be plotted (D > 3) and finding a useful projections seems to interleave regu-
lar dimensionality reduction tehniques and clustering (i. e. the task of building
groups as we will see later).

Since 2012, several researchers identified what large scale settings for com-
putations and memory meant not only for applied mathematics but also for
the worldwide economy describing it at the Big Data era: Among them Zik-
oupoulos and Eaton [2016], Peters [2012], Jordan [2013]. Consider N, the number
of elements of a database (the cardinality), D the size of each element (the di-
mensionality), then we observe two training conditions or regimes for machine
learning algorithms:

B I G D ATA R E G I M E N
D ≫ 1 Statistical theorems behave nicely but software

programming was difficult before data storage and computations speed
dramatically improved (even on the software side for parallelization)

S M A L L D ATA R E G I M E N
D ≪ 1 or N ≃ D As we will see, the curse of dimension-

ality make things very difficult in terms of statistics but computations are
easy.

In practice, software and hardware issues of the big data regime have been
solved in the 2000s and the beginning 2010s at an industry-quality level. Domain
specific and statistical expertise are still required for small data regime. Indeed
with images for example, hierarchical convolutions organized layers in neural
networks has a decorrelating effect which reduces the impact of the huge dimen-
sionality of data: intermediate results (called feature maps) are still very big on

R E P R E S E N TAT I O N S 20

the first layers but the number of parameters has been substantially decreased
thanks to the small-sized convolution kernels. For other domains, applying Con-
volutional Neural Networks (CNN) did work but mastery of each domain must
not be ignored. In other words, injecting enough knowledge into an automatic
system is basically diminishing the dimensionality (i. e. removing redundancy
with respect to the task at hand) which is good news towards coping with the
curse of dimensionality: this transforms a difficult small data regime into an
easier big data regime.

1.5.1 Big data and neural networks

We previouly established that a convincing decrease of dimensionality D thanks
to the appropriate representation tools is key for good empirical results in ma-
chine learning. Now it is time to explain how to optimize an objective function
under large cardinality conditions. Since the 1950s, some early work mixing
statistics and optimization, Robbins and Monro [1951] allowed large cardinality
training dataset thanks to stochastic optimization. One interesting aspect of the
Robbins-Monro theorem is that the objective (nor the full-gradient) does not need
to be evaluated directly anymore but only a biased-free estimate of its gradient
with respect to the learned parameters. In the end, the large scale constraint is
relieved because only randomly picked mini-batches of data are needed instead
of the whole dataset during the optimization. This early mathematical finding
paved the way for contemporary large scale learning fulfilled ambitions [Bon-
nans et al., 2003] beyond deep learning. Several scientific avenues have been
taken with sometimes sophisticated algorithmical tools [Bertsekas, 1997] with
new programming context (e. g. distributed systems [Hendrikx et al., 2019] or
limited memory systems [Defazio et al., 2014]).

In a nutshell, the Robbins-Monro theorem allows to manipulate an idealized
loss function (over all the data of the universe) without the need to compute its
values nor its gradients with respect to its parameters as long as one can provide
a biased-free estimator of the loss function gradient needed for the stochastic
gradient descent optimization scheme. Surprisingly, it turns out that artificial
neural networks actually look like biological neural networks for learning (but
much less for its structure and running behavior inspite of 1950s predictions).
Indeed, stochastic gradient descent follows a Hebbian rule2:

θt+1 = θt − αtft (18)

where t is an iteration index, θ the parameters that are learned, α is a learning
rate (often constant) and finally ft is an incremental progress computed thanks to
a measured error. Numerically, ft is the gradient of an objective L to minimize:

ft = ∇θL(θt) (19)

2 Donald O. Hebb was an influential neuro-psychologist from the 1950s

R E P R E S E N TAT I O N S 21

which can be approximated by a biased-free estimate of ∇θL(θt) according
to the Robbins-Monro theorem. For a general objective to minimize such as
L(θF) = E(x,y)∼Nature

(

ℓ
(

y,F (x)
))

the hebbian rule has a replaced stochastic
gradient f̂t instead of the “true” one ft:

θt+1 = θt − αtĝt (20)

where

f̂t =
1
B

B

∑
b=1
∇θ

(

ℓ
(

yib ,F (xib)
))

(21)

and ib ∼ UN(1, N) is an uniform index parsing the N-cardinality training dataset
in mini-batches of size B.

It is noteworthy to recall that there is a simple case where the best learning rate
is given in closed form: the online estimation of a mean random multivariable
which is related to the least squares problem:

µt+1 = µt +
1

t + 1
(xt+1 − µt) (22)

From a practitioner point of view, large cardinality problems have been solved
both on the software/hardware side and on the optimization side. The dimen-
sionality issues still remain and is in essence more specific to each application we
tackle.

1.5.2 The Curse of Dimensionality

Enhancing data structure in the data representation is an efficient way to cope
with the curse of dimensionality issue that we focus on in this section. As said
above, in images and speech, convolutions provided enormous improvements in
terms of accuracy for the given task. Word ordering structure is today considered
as standard since the rise of embeddings techniques with word2vec [Mikolov et al.,
2013] and variants even with the recent BERT method. The fundamental idea
is to transform observed occurrences of words ordering on large corpora into a
regression problem providing relevant words representations into real-valued
vectors. The situation is much more difficult in genomics despite worldwide
sincere attention [Barillot et al., 2012]. Indeed 1 human is DNA-represented
by D ≃ 1012 nucleotides and the worldwide population is N ≃ 109 which
corresponds to a small data regime once again. Even in diagnostics problem
healthy v. s. ill detection or classification problem, in theory a balanced and
worldwide-sized annotated DNA-dataset is not enough for classification nor
interpretation which is quiet an embarassing (theoretical) scenario. We did not
yet leverage enough desirable and yet unknown DNA structural information
among those nucleotides to get an easier big data regime.

R E P R E S E N TAT I O N S 22

Now we know that high cardinality is not a problem anymore if dimensionality
is not too high keeping the problem under the big data regime. In small data
regime when dimensionlity is too high, devising algorithms is difficult because
of the well-known Curse of Dimensionality3 that we mentioned earlier. To explain
that phenomenon dubbed the Curse of Dimensionality, a classic example considers
the volume of a sphere of unit radius in dimension D which follows

V(D) =
πk

(

k
)

!
if D = 2k is even, or V(D) =

2(k!)(4π)k

(2k + 1)!
if D = 2k + 1 is odd (23)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Dimensionality

1

2

Vo
lu
m
e

Figure 4: Volume of an euclidean sphere of unit radius in dimension D

In Fig 4, first we can see that volume V(D) reaches its maximum for D = 5
and right after, that same volume V(D) dramatically decreases towards 0 as D

grows (limD→∞ V(D) = 0) which is not intuitive and rather deceiving because
of how we experience spatial neighborhood notions in our 2D and 3D living
environment as human beings (we would expect that volume to grow indefinitely
as it does for D = 1, 2, 3, 4). For example, in low dimensionality regimes (D = 1, 2
or 3), if a point lies close to the origin inside an unit ball neighborhood, then
the volume to exhaustively parse for finding it is reasonably big (V(D) ≃ 2, 3.14
or 4.18 respectively). But for high dimensionality regimes (e. g. D = 30), the
corresponding volume to parse gets extremely small (V(D) =≃ 2× 10−5) which
is unsettling: we would think that looking for a point inside a higher dimensional
sphere would be larger but this is not true. In the end, this means that rudimentary
notions like distances or even similarities behave unexpectedly in such high
dimensionality data regimes. Another pedagical example considers the ratio
R(D) between a 0.9-radius and 1-radius balls’ volumes (R(D) = 0.9D). In Fig. 5,
that R(D) ratio also exhibits an embarassing phenomenon with respect to our
intuition: as the dimensionality D increases, the volume ratio R(D) goes to zero

3 The keyphrase Curse of Dimensionality was first mentioned by Bellman [1957]
to describe the need of efficient algorithmic tools like Dynamic Program-
ming [Dasgupta et al., 2008] to efficiently explore huge discrete solutions
spaces, historically later it also concerned many kinds of large data spaces

R E P R E S E N TAT I O N S 23

(limD→∞V(D) = 0) which means that in high dimensionality regimes the orange

0.1-peel occupies almost all the entire orange volume in layman’s terms.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Dimensionality

Vo
lu
m
e

Figure 5: 0.1-peel ratio R(D)f or an euclidean sphere of unit radius in
dimension D

For pedagogical reasons, we may present a metaphor that we dubbed the
“crinkled paper in a room”. Indeed, in general, real data distribution seem to
behave like a crinkled sheet of paper with low intrinsic manifold dimensionality
(say d = 2) inside of a large space of dimensionality D (say a d = 2 crinkled sheet
of paper living in a room of D = 3 dimensions to help our 3D-living creatures
intuition). In this metaphor, revealing the data structure and focusing on the
independent variables ruling the data boils down to how we iron or un-crinkle

that sheet of paper to explicitly have access to the real degrees of freedom parsing
the data.

Interestingly, following this metaphor helps us understand than the GAN
approach is doing the opposite: starting from a low dimensional uniform law (the
ironed sheet of paper) transformed by the generator into a higher dimensional
and much more sophisticated law. GAN optimization is basically learning how
to un-iron or crinkle a clean sheet of paper into something close to the real data
manifold.

Unfortunately, in terms of measures theories, neither the Riemann nor Lebesgue
measures allocate weight to that sheet of paper (crinkled or not, it is respectively
not defined and zero) which may lead to explore new theoretical research av-
enues and maybe studying other probability foundations like maybe not yet
sufficiently explored in machine learning based on the Hausdorff measure [Ab-
bott and Rogers, 1999] or using probability freed from measure theory like the
acclaimed attempt of Breiman [1992]. Another way to cope with this difficulties
is to abandon the notion of probability distributions to embrace energy-based
models as initiated by LeCun et al. [2006] which require less assumptions to
model data and allows to generalize a distribution into an energy (through a neg-
exponentiation from an energy analogy from Physics but without the constraint
of having a unit measure over space).

On the kernel-based techniques [Shawe-Taylor et al., 2004] side during the
1990s and 2000s, the dimensionality problems disappear because once a kernel

R E P R E S E N TAT I O N S 24

similarity matrix is built, one does almost not need the data anymore to operate
analysis (with supervised kernel-based support vector machines or unsupervised
spectral clustering). With kernels, dimensionality problems are avoided thanks to
the kernel similarity matrix. All dimensionality-wise considerations are relegated
to the crucial kernel definition. Unfortunately, such techniques are limited due to
the inherent quadratic memory complexity of such pairwise structures implied
by the similarity matrix.

Meanwhile, on the Model-based side, naive approaches do not succeed to
achieve good results because of that high dimensionality: they ultimately loose
their specific model selection capabilities because of over-parametrization to
match that high data dimensionality. Indeed, in reasonable dimensionality con-
ditions, the main advantage of such techniques is their ease for probabilistic
interpretation and model selection. Over-parametrization (or over-fitting) can be
seen as a data starvation phenomenon: a large number of parameters to fit would
require a huge amount of data to get reliable estimations which in practice leads
to poor performance. We see that once again, the interesting factor is the ratio N

D
of cardinality N over D and not one of them without considering the other one.

In the context clustering of large scale dimensionality, parcimonious and cluster-
wise representations [Bouveyron and Brunet-Saumard, 2014b] circumvent these
high dimensionality problems and still keep the appealing probabilistic prop-
erties of model-based clustering without sacrificing accuracy. One can remark
that in the supervised classification literature, sparsity (and even structured spar-
sity [Jenatton, 2011]) also did cope with dimensionality problems that are similar
in essence.

Model-based clustering algorithms are popular because they are renowned for
their probabilistic foundations and their flexibility [Duda et al., 2012]. Indeed,
even for non-statisticians, the possibility to output meaningful probabilities is
intuitive and principled. The main drawback of mixture-based and model-based
methods for clustering is the lack of richness (in Kleinberg’s sense see [Kleinberg,
2015] but we will come back on it later) due to necessary distribution assumptions
that may not be necessarily true for real data which justifies our attempt to
alleviate this limitation thanks to the functional expressivity of neural networks.

One fundamental machine learning hypothesis is recurring in the literature [Mur-
phy, 2012, Duda et al., 2012, Bishop, 2006]: real data live in a low-dimensional (of
dimension D) manifold in a much higher dimensional space (of dimension D and
d≪ D). A classic pedagogical example consists of the independent and uniform
sampling of each pixel of an image: there is no realistic chance to produce a
convincing photograph! This means that even sophisticated mathematical object
such as photographs lie on a manifold of lower intrinsic dimensionality than the
number of pixels multiplied by the number of channels. In a reverse fasion, this
has been confirmed by the DCGAN work of Radford et al. [2015] that is able
to generate D = 3× 256× 256 ≃ 2× 105 convincing DCGAN images from a
random uniform variable made of d = 100 independent coordinates). Thanks to

R E P R E S E N TAT I O N S 25

this low-manifold-dimensionality hypothesis for data in mind, it is reasonable to
investigate some dimensionality reduction techniques.

1.5.3 Dimensionality Reduction

At the beginning of the XXth century, Principal Component Analysis (PCA)
was invented [Pearson, 1901]. This technique finds an optimal linear (or affine)
projection with respect to compression/decompression quadratic reconstruction
error. This algorithm gave birth to two more recent ones: (i) its kernelized
extension [Schölkopf et al., 1998] (euclidean distances can be expressed with
dot products that are in turn replaced by kernel evaluations in a Reproducing
Kernel Hilbert Space RKHS following the well-known kernel trick) and (ii) auto-
encoders [Kramer, 1991, Bourlard and Kamp, 1988, Vincent et al., 2010] which
replaces compression and decompression by one neural network each.

Figure 6: “Two Moons” Toy Dataset

1D Projection Axis
0.00 %

3.10 %3.00 %

Fr
eq

ue
nc

y

Figure 7: Two Moons Projection through PCA into 1D

Fig. 7, 8 and 9 show PCA, (Gaussian) kernel-PCA and AE dealing with non-
linearly-structured yet simple 2D distributions shown in Fig. 6. It turns out that
(up to the Gaussian parameter of our kernel-PCA), the non-linearity improve-
ments of PCA in two different variants namely kernel-PCA and AE does help
ironing the crinkled distribution of interest (to follow our metaphor in section 1.5.2).

R E P R E S E N TAT I O N S 26

1D Projection Axis
0.00 %

1.90 %

2.10 %

Fr
eq

ue
nc

y

Figure 8: Two Moons Projection through kernel-PCA into 1D (with
Gaussian Kernel)

Figure 9: Two Moons Projection through an Auto-Encoder into 1D

Dimension reduction approaches such as principal components analysis (PCA)
or even autoe-encoders (AE) [Vincent et al., 2010] may help for clustering but,
as is, are not designed with a clustering mindset which causes poor results in
practice. These global dimension reduction techniques are pragmatic but ignore
information which is discriminant for separating clusters. Indeed, clusters are
usually living in different sub-spaces between clusters if there exist. Back in the
original data space, there is no reason to find an easy-to-find common linear
sub-space that is discriminant enough to separate all the classes at the same time.
For example, if clustering is taken into account while reducing the dimensionality,
then one solution could be to divide the reduced space into as many zones as
clusters such that they do not overlap while still reducing the dimensionality.
Thus, we avoid generic approaches because they cannot afford by themselves to
capture these subtleties in the data. One must combine dimensionality reduction
and clustering. Clustering could be looked at as an extremely simplified version
of the data by just keeping the index of the cluster the data belong to.

The high dimensionality clustering literature [Bouveyron et al., 2007] tends
to show that clustering and dimensionality should be done a the same time
(i.e. in an end-to-end fashion) and not sequentially. Indeed, on the one hand,
doing clustering first for huge dimensionality data is computationally difficult for
obvious reasons and also statistically difficult because of the curse of dimensionality.

R E P R E S E N TAT I O N S 27

On the other hand, doing dimensionality reduction first looses hidden cluster-
wise information about data. One major issue of this work is precisely trying to
tackle this “chicken or egg” problem.

Vanilla Auto-encoders alone do not allow to specify a precise probabilistic
structure for a low-dimensional representation. This limits their combination with
model-based clustering techniques. Furthermore, optimizing an auto-encoder
and a Gaussian mixture generally implies the use of a trade-off hyper-parameter
to combine these two objectives. This hyper-parameter is possibly hard to tune
as cross-validation is not an option in our unsupervised settings as no validation
score can be used by definition.

The problem of learning representations from data in an unsupervised manner
is a long-standing problem in machine learning [Bengio et al., 2013, LeCun
et al., 2015]. Principal Components analysis (PCA) and auto-encoders (AE)
which can be seen as non-linear extension of PCA [Baldi and Hornik, 1989]
have been used for representing faces [Turk and Pentland, 1991] or to produce
a hierarchy of features [Chan et al., 2015]. Other techniques have been used
such as sparse coding [Mairal et al., 2008] where the representation of one image
is a linear combination of a few elements in a dictionary of features. More
recently Bojanowski and Joulin [2017] learned features unsupervisedly by a
procedure that consists in mapping a large collection of images to noise vectors
through a deep convolutional neural networks.

Clustering and dimensionality reduction are interleaved. The importance of
finding a suitable representation for unsupervised tasks was first highlighted
by Chang [1983], who showed that embeddings based on principal compo-
nent analysis were often unfit for clustering purposes so we suggest the idea of
learning both clustering and dimensionality at the same time in an end-to-end
deep learning fahsion. In a more model-based literature [Bouveyron et al., 2019],
combining clustering and dimensionality reduction simultaneously also proved
more successful than separating dimensionality reduction and clustering sequen-
tially, which in turn, was already more successful than doing only one of them for
both results. This means that both deep learning and Bayesian literatures tend
to show a certain symbiosis between clustering and dimensionality reduction
towards data analysis and understanding.

In the context of linear embeddings (that offers dimensionality reduction), the
main approach was to combine linear discriminant analysis with the k-Means (k-
Means) algorithm (DisKMeans) [De la Torre and Kanade, 2006] or more generally
a Gaussian Mixture Model (Fisher-EM) [Bouveyron and Brunet, 2012]. Much
less research is available in relation to non-linear embeddings. Archambeau and
Verleysen [2005] however proposed to use manifold learning in combination with
GMM. Combining clustering with representation learning has been done with
deep learning techniques in the past. An early attempt was explored by Trigeorgis
et al. [2014] who used a deep semi-non-negative-matrix-factorization (NMF)

D I S S E RTAT I O N O U T L I N E 28

model to specifically factorize the input into multiple stacking factors which are
initialized and updated layer by layer with k-Means on the last layer.

Neural networks have proven successful in the context of supervised classi-
fication and even regression [Goodfellow et al., 2016]. Indeed, their ability to
transform data such that the frontiers between classes are hyperplanes in the
classification setting have made them very popular. In spite of the non-convexity
of their optimization scheme, today, they are superior to convex machineries
such as Support Vector Machines even for kernelized ones in almost every do-
main in Computer Vision and sound processing for example. The idea of having
learned features has already been tackled by Chen [2015] used Deep Belief Net-
works together with maximum-margin clustering. Wang et al. [2016] jointly
optimized a sparse coding objective and a clustering loss. Eventually, all these
recent approaches have been empirically outperformed by auto-encoders’ style
machineries.

When it comes to compressing data while limiting loss of reconstruction in-
formation, auto-encoders have proved efficient [Vincent et al., 2010]. Briefly, an
auto-encoder is a neural network made of two parts: (i) the encoder maps the data
in a low-dimension space, (ii) the decoder maps them back to the original space.
An auto-encoder is trained to reconstruct the data in the original space (usually
in a least squares fashion but it could be any differentiable metric). At the end,
if the reconstruction error is low, then codes resulting from the encoder (also
called “bottleneck”) have compressed data without loosing too much information
(because by construction, it is possible to rebuild data from codes thanks to the
decoder). The main assumption behind this technique is that the input data space
of high dimensionality contains structure that could be successfully embedded in
a lower-dimensionality manifold [Alain and Bengio, 2014, Sonoda and Murata,
2016] and the code space plays that embedding role.

Generative Adversarial Networks (GAN) [Goodfellow et al., 2014] establish
a min-max game between a generator neural network on one side and a dis-
criminator or critic neural network on the other side in order to generate data
(from random noise) that the critic cannot distinguish from the real data. From
that influential work emerged Adversarial Auto-Encoders (AAE) by Makhzani
et al. [2015], Wasserstein Auto-Encoders (WAE) by Tolstikhin et al. [2018] and
Adversarially Learned Inference (ALI) by Dumoulin et al. [2017]. In a few words,
thrice are turning an auto-encoder into a generative model. They are trained in
different ways that put an arbitrary fixed prior distribution in the code space.
For the clustering chapter, we were initially inspired by these approaches with
learned mixture distribution instead of a fixed prior one.

1.6 D I S S E RTAT I O N O U T L I N E

This thesis is illustrating the process of learning representations using neural
networks and optimal transport through three applications:

D I S S E RTAT I O N O U T L I N E 29

C L U S T E R I N G joint work with Pierre-Alexandre Mattei, Andrés Almansa and Charles

Bouveyron It is about unsupervisedly representing large-scale datasets in
groups. This offers data tools to get a better intimate knowledge of the data
with whereas the usual deep learning supervised classification algorithms
do not so easily unless tedious manual annotation is already paid for at least
on training data;

U N S U P E RV I S E D F E AT U R E I M P O RTA N C E It consists in analyzing data at a co-
ordinates level with a wide of applications from pure data understanding to
background/foreground image segmentation in an unsupervised manner
(the only remaining supervision being a pile of images containing the same
semantic class of content). In this work, we only propose an attempt to ac-
complish that desirable goal and we provide a sound theoretical framework
to do it;

P R E D I C T I O N W I T H U N C E RTA I N T Y We insist on a better interpretation of su-
pervisedly trained neural networks output in terms of uncertainty (espe-
cially for classification probabilities) towards a simple yet efficient way to
improve uncertainty estimation in such supervised learning scenarios. In
this contribution, sensitive applications can be a little more reliably envi-
sioned when simple industrial constraints or more complex health, security
and even justice issues are involved.

At the end of this mauscript, we provide an appendix Generative Adversarial

Networks Initialization with Auto-Encoders. This is an heuristic for practical initial-
ization of GAN training with tips revisiting pre-training traditions from the 1990s
but for contemporary machine learning tools.

In this state of the art chapter, we introduced the challenges related to thrice
learning representations, optimal transport and neural networks and the next
chapters will be devoted to applications in clustering, unsupervised feature
importance extraction and supervised uncertainty estimation thanks to the afore-
mentioned tools. Some ongoing and future work are envisioned as a conclusion
and an appendix presents practical yet effective techniques for training GANs
that we gathered from experience.

1.6.1 Clustering

Clustering is one of the oldest unsupervised learning task [Jain, 2010]. Clustering [Duda
et al., 2012] is the task of making groups without the need of any manual anno-
tations. Along with dimensionality reduction, clustering is a desirable goal in
data analysis, visualization and is often a preliminary step in many algorithms
for example in computer vision [Ponce and Forsyth, 2011] and natural language
processing [Goldberg, 2017]. Clustering and more generally data analysis does
not only consist in pre-processing steps, it is about helping us (as human beings)
understanding the underlying structure of data at hand.

D I S S E RTAT I O N O U T L I N E 30

Meanwhile, the computer vision field has recently witnessed major progress
thanks to end-to-end deep-learning systems since the seminal work of LeCun
et al. [1990] and more recently of Krizhevsky et al. [2012]. Most of the work
however has been carried out in a supervised context. Our effort leverages that
wealth of existing research but in an unsupervised framework.

While optimal transport [Villani, 2008] have gained recent attention especially
for generating data (i.e. imitating data) in large scale settings (large both in terms
of dataset cardinality N and dimensionality D) with Generative Adversarial
Networks (GAN) originated by Arjovsky et al. [2017] and Sinkhorn divergences
by Genevay [2019], we chose to ignore imitating capabilities and just use this
literature to algorithmically manipulate Wasserstein distances. For example, this
considerable amount of anterior work gives us a significant ease for optimization
with helpful tools such as stochastic gradient descent.

The purpose of this research is to build a linear-complexity algorithms that
use non-linear embeddings into code spaces. Indeed, in the clustering literature,
one can distinguish two kinds of clustering algorithms with respect to their
computation and memory complexity as function of the cardinality N. On
one side, we have linear algorithms such as k-Means (k-Means) and Gaussian
Mixture Models (GMM), which usually work directly on the data (i.e. without
any medium such as embeddings and transformed version of the raw data). On
the other side, we also have quadratic and cubic algorithms such as hierarchical
clustering [Duda et al., 2012] and spectral clustering [Ng et al., 2001, Zelnik-
Manor and Perona, 2004, Von Luxburg, 2007] that use pairwise similarities to
emphasize the latent clustering structure lying on the data. Now, we describe
some statistical problems related to the clustering task, and we will enumerate
some famous clustering algorithms.

Clustering is an ill-posed problem

In general, there exists no clear, objective means of defining a “good clustering”.
For a fixed number of groups, Kleinberg [2015] presents three desirable properties
for a given clustering algorithm, namely:

S C A L E I N VA R I A N C E Clustering output should not change if we multiply data
by a constant

R I C H N E S S O R C L U S T E R S H A P E S I N VA R I A N C E all separable cluster shapes
should be possible (e. g. beyond linear separation or ball-shaped clusters)

C O N S I S T E N C Y O R M E T R I C I N VA R I A N C E Clustering output should not change
with respect to the choice of distance

and he prooved the impossible existence of such an algorithm featuring all these
three properties simultaneously. In other words, his clustering impossibility
theorem tells us that clustering is an ill-posed problem. To add insult to injury,

D I S S E RTAT I O N O U T L I N E 31

when data representation (or embedding) is involved, that clustering task be-
comes all the more unclear because the underlying metric is allowed to change
arbitrarily. Indeed, the algorithm could expand the distance between points in the
embedding space that initially were located near to each another, which would
break initial pairwise “distance” constraints between the initial points and would
inevitably violate the internal structure relating data. Well aware about these
difficulties, we decided to try anyway following our scientific predecessors as
clustering is useful in practice “as is”.

Taking advantage of the abundant optimal transport literature with probabili-
ties (relaxing hard clusters memberships definition to prefer probabilities) and
also the neural networks literature (which successfully handles arbitrary classes
shapes in supervised contexts) make our efforts reasonable towards a useful
clustering algorithm for practioners. Let’s review the clustering axioms of Klein-
berg [2015]. First, once a metric is chosen, scale-invariance can be given for free
thanks to the geometric optimal transport interpretations i. e. all 1-Wasserstein
distance would be multiplied like the data accordingly without changing the
optimization results. Second, Wasserstein distances operate on all pairs of dis-
tributions to the contrary of the Kullback-Leibler divergence (which requires
common support which explains the use of infinite support distributions for the
models like the Gaussian), and thus no cluster shapes assumption is required,
thus richness would be fulfilled by the functional expressivity power provided
by neural networks. Third, unfortunately, we would not be able to achieve con-

sistency because our models and algorithms strongly depend on the euclidean
distance. In fact, this third consistency property could be partially reached thanks
to a generalized notion of Wasserstein distance defined by the maximum Wasser-
stein distance when the metric parses a family of distances (which makes the
maximum of them still a distance) but this would require further scientific work
that we just skimmed in our unsupervised feature importance contribution.

Richness (i. e. free clusters shapes robustness) is obtained thanks to an in-
termediate space that we call embedding space or code space which has lower
dimensionality that the data space. If theoretical or practical tools are given to
navigate between these spaces, back and forth without loosing too much infor-
mation between data and codes thanks to encoder and decoder functions, then,
model-based distribution assumptions can be made on the code side which gives
us the richness property in return on the data side like in the work of Jiang et al.
[2016]. Indeed, at the beginning of this thesis (mid-2016), our first intuition was to
put a mixture distribution (which is a typical model-based idea) at the bottleneck
of an auto-encoder (which is a typical deep learning unsupervised tool) with the
hope of gathering the best of these two universes: probabilistic ease for model
selection coming from model-based legacy on one side and rich representations
with neural networks coming from deep learning legacy on the other side.

Fig. 10 represents our strategy to alleviate dimensionality issues while simu-
lataneously performing clustering in a symbiotic fashion: this strategy proved

D I S S E RTAT I O N O U T L I N E 32

z ∼

∑
K

k=1
πkpk

Figure 10: Data and codes spaces

successful in several papers that we briefly present here. The first work we saw
doing clustering in the code space of an auto-encoder is the one of Song et al.
[2014] and Yang et al. [2016a]. The idea is to cope with large data space dimension-
ality D ≫ 1 thanks to an intermediate code space of lower dimensionality d≪ D.
More precisely, Song et al. [2014] considered a k-Means-regularized auto-encoder
loss to get a code space that is more easily clustered with k-Means namely their
loss is the sum of the reconstruction and the k-Means residual with a chosen
hyper-parameter combining both. This philosophy is the one adopted for our
own approach but with a mixture of distributions ∑

K
k=1 πk × pk of distributions

pk weighted by proportions π. We use a code space where clusters memberships
(not data themselves but encoded versions of them) are easily computed. In
our preliminary experiments, we found that optimizing the k-Means objective
(online) when doing joint clustering and feature learning did not work well. We
believe this is because it creates high magnitude gradients for points that are far
away from cluster centers. Moreover there are sharp discontinuities at cluster
boundaries whereas GMM diminishes that effect thanks to low density/probabil-
ity values for far points. This empirical conclusion seems to confirm what Xie
et al. [2015] also observed.

In a similar spirit, [Huang et al., 2014] have developped a locality-preserving
and group-sparsity constraints method to handle the clustering. Yang et al.
[2016b] alternate between supervised classification and feature learning through
Convolutional neural networks (CNN) for images clustering. They significantly
improved the state-of-the-art but their method is limited by its intrinsically
quadratic complexity. In a similar spirit, Xie et al. [2015] embrace the t-SNE
framework [Maaten and Hinton, 2008] in a clustering context through an auto-
encoder in a non-model-based fashion. But doing t-SNE first and then clustering
is not a good idea because of the same loss of useful cluster-wise information that
occurred with PCA or auto-encoders.

D I S S E RTAT I O N O U T L I N E 33

All these works tend to show that simultaneous representation learning (by
dimensionality reduction for example) and clustering actually do help each other.
The reader will find an excellent review in the work of Aljalbout et al. [2018].

Clustering in Large-Scale Cardinality Regimes

k-Means and Mixture Models have been studied in large scale cardinality set-
tings [Bottou and Bengio, 1995, Cappé and Moulines, 2009] but these algorithms
work thanks to strong distribution assumptions (like cluster-wise Gaussian clus-
ters shapes for GMM) directly in the original data space (i.e. without embeddings).
Agglomerative clustering methods greedily use a square similarity matrix to fu-
sion data into clusters but the building of that N× N matrix is undoable for large
cardinality N. Spectral clustering [Zelnik-Manor and Perona, 2004] works with
very mild (or no) cluster shapes assumptions thanks to the kernel trick which
gives access to high (and even infinite) dimensional representations space at the
cost of a square similarity matrix once again which inevitably blocks the way
leading to large cardinality datasets. Nevertheless, Choromanska et al. [2013]
found a way to gracefuly alleviate this problem through to the the Nyström
method that only demands the computations of only few entries of that non-
storable square similarity matrix thanks to a low-rank approximation (which
is justified by the low intrinsic manifold dimensionality hypothesis related to
our 2D crinkled sheet of paper in a 3D room metaphor). The present work is an
attempt to provide a scalable method with the mildest possible cluster shapes
assumptions thanks to neural networks that already have these two desirable
properties in the supervised context: scalability and mild data assumptions.

The universal approximation theorems [Hanin and Sellke, 2017] allow neural
networks to achieve richness (in the sense of Kleinberg [2015]) in theory. But in
practice, that richness requires the estimation of a lot of parameters which is not
reliable unless we have a large cardinality dataset during training compared to
the dimensionality as explained above in section 1.5. In this case, large cardinality
datasets are handled thanks to stochastic gradient optimization [Bach, 2016].
Indeed, considerable research in supervised classification has been conducted
based on these foundations during the last decades but this work’s challenge is
about extending this success to unsupervised classification (a. k. a. clustering).

Generative approaches produce a model in the form of a synthetic data dis-
tribution that is supposed to be close to the original data distribution with re-
spect to a criterion such as the Kullback-Leibler divergence (which is equivalent
to maximizing the likelihood as explained by the Pattern Recognition and Ma-

chine Learning textbook of Bishop [2006]) typically optimized with Expectation-
Maximization [Dempster et al., 1977]. Parameters and hyper-parameters are
two different things: parameters are optimized whereas hyper-parameters are
imposed before optimization and can be selected after optimization among a
set of optimized models (i. e. model selection). One considerable advantage

D I S S E RTAT I O N O U T L I N E 34

of generative techniques over others is that hyper-parameter selection is made
easy through model selection thanks to principled mathematical (often Bayesian)
foundations. Inddeed, building such a model for clustering gives strong tools to
evaluate generalization capabilities (with famous criteria such as Akaike Infor-
mation Criterion AIC, Bayesian Information Criterion BIC summarized by Duda
et al. [2012] or even Integrated Completed Likelihood ICL [Biernacki et al., 2000]
etc.).

Discriminative methods for clustering were initially inherited from supervised
classification these last two or three decades. They are also extended to unsu-
pervised classification (a. k. a. clustering). In clustering these discriminative
approaches would not build a model that would fit the data but would rather
separate the ouput classes or groups from each other (e.g. in a one-vs-one or
one-vs-rest manner) focusing on the boundaries of the groups rather than on the
groups themselves. Spectral Clustering [Von Luxburg, 2007] or DIFFRAC [Bach
and Harchaoui, 2008] are two examples of such techniques.

k-Means solves an (Optimal) Transport Problem

We take a close look at the k-Means loss for data (xi)i=1...N into K groups:

min
σ,µ

1
N

N

∑
i=1
‖xi − µσ(i)‖

2
2 (24)

that we optimize over the centroids µ = (µk)k=1...K and the assignments function
σ from J1, NK ⊂ N to J1, KK ⊂ N.

We studied k-Means which is probably both the oldest and most famous
clustering algorithm [Jain, 2010] and we realized that it tries to efficiently solve an
optimal transport problem. Put differently, the global minimum of the k-Means
loss satisfies the optimal transport problem of choosing a limited K number cen-
troids (µk)k=1,...,K such that the data empirical distribution p = 1

N ∑
N
i=1 δPxi on

the one hand and the centroids weighted distribution q = ∑
K
k=1 πk × δµk

on the
other hand would be the closest possible in the 2-Wasserstein sense associated
to the squared euclidean distance, although usually, we use the 1-Wasserstein
distance associated with the plain and simple euclidean distance:

Wc2(p, q) = min
γ∈Γ(p,q)

E(x,m)∼γ

[

‖x−m‖2
2

]

(25)

and for discrete distributions:

Wc2(p, q) =
1
N

K

∑
k=1

πk ×Ex∼p

[

‖x− µk‖
2
2

]

(26)

which is the k-Means loss and of course we have a link between the proportions
π and the assignments σ: πk = #{σ(i)=k| i∈J1,NK}

N as for discrete distributions,
optimal transport plans are degenerated [Peyré et al., 2019].

D I S S E RTAT I O N O U T L I N E 35

This interesting link between clustering and optimal transport encouraged us to
investigate further between these two scientific literatures: clustering and optimal
transport. Generalizing this observation to more sophisticated distributions
thanks to Generative Adversarial Networks could lead to having a fatter support
distribution than just Diracs:

min
σ,(θpk

)k=1...K

W(
K

∑
k=1

πk × pk,
1
N

N

∑
i=1
×δxi

) (27)

where θpk
parametrized the kth cluster generator distribution pk (that was previ-

ously reduced to a Dirac distribution located on the kth centroid µk). In practice,
we can have latent variables z ∼ N (0d, Id) and we define in yk ∼ pk by y = Gk(z)
as we will develop later. That initial idea we had is encouraging in a sense that it
suggests an interesting mixing between optimal transport, neural networks and
model-based clustering.

We think that there is an opportunity here to mention that k-Means is not a
regular special case of Gaussian Mixture Models through Expectation Maximiza-
tion (EM-GMM) although this false idea is widespread. It is true that when
neg-exponentiated, the k-Means looks like the negative likelihood of a Gaussian
mixture fitted on the data with identity (or equally proportional to) covariance
matrices and equal proportions but there is major difference: memberships prob-
abilities in EM-GMM are not degenerated but they are in k-Means. k-Means
can still be seen as an example of the Expectation-Maximization technique but
these distinctions have been clearly made by Celeux and Govaert [1992]. The
link between k-Means and optimal transport is stronger than the one between
k-Means and EM-GMM and also more fruitful in terms of open research.

1.6.2 Unsupervised Feature Importance

As suggested earlier when we analyzed the consequences of the impossibility
theorem by Kleinberg [2015], metric invariance is an interesting subject. To handle
this difficulty related to the choice of the metric, one can work with a set of metrics
because we know that the metric defined by the upper bound evaluation over
a set of ditances is also a distance. To the best of our knowledge, this angle
has not been tackled by the research community to study unsupervised feature
importance extraction.

In supervised learning, Breiman [2001] proposed routines based on permuta-
tion and mean decrease in impurity but much less work has been done in the
unsupervised context. This is probably due to the fact two interleaved problems
remain: metric learning, feature selection which makes our task ill-posed. We
actually suggest that it is worth trying to improve regular and generic euclidean
approaches.

D I S S E RTAT I O N O U T L I N E 36

1.6.3 Uncertain Predictions

In this chapter devoted to uncertainty in supervised learning, we borrow sci-
entific items from Bayesian and frequentist scientific communities. Indeed, we
believe that mixing both scientific cultures is beneficial in general and for uncer-
tainty estimation in particular: probabilistic interpretations provided by Bayesian
formulations and function expressivity fitted to large scale data provided by the
large frequentist fauna of algorithms which is of course not limited to deep neural
networks.

Bayesian and Frequentist scientists in Statistical Learning

There is a so-called rivalry in automatic statistical learning between Bayesians
on one side and frequentists on the other side that is quiet disturbing when
seen from a young scientific point of view. Indeed, we can laughably notice that
Bayesian scientists are allowed to use histograms of frequencies and frequentist
scientists are allowed to use the Bayes rule. This kind of debate is often sterile
but it is probably a characteristic of still young non-unified sciences with varying
names accross trends. In this section, we briefly describe the specific issues taken
into account by these two commonly separated communities.

The Bayesian framework [Barber, 2011] is characterized by its use of parametrized
probability laws which allows to benefit from interpretation ease (including un-
certainty) when predicting information of producing description about data.
The preferred statistical tool is usually the so-called bayes rule, hence the name
of this scientific community. The choice of the modelled distributions carries
interpretation and knowledge that is elegantly injected into the trained systems.

In contrast, within the frequentist approach [Bishop, 2006], we assume that
uncertainty is inherenty present due to the randomness coming from repeatable
experiments producing empirical observations. Hence, many machine learning
problems tackled with a frequentist point of view is a statistical estimation prob-
lem based on observed data. If one could accept caricatures, then we would
say that Bayesian statistical learning is a principled probabilistic and thus inter-
pretable framework (hence their appealing reputation but at the cost of often
wrong model assumptions) which offers extraordinary research avenues such
as model selection without extra data and meaningful probability interpreta-
tions whereas frequentist statistical learning produce good-results-oriented black-
boxes [Neal, 1995] with impressive recognition rates resculpting our modern
world.

Recently, in a Ph.D. thesis Gal [2016], dared the idea of taking advantage of both
worlds in a Bayesian deep learning approach (although the merit was certainly
to revisit such a counter-intuitive approach that in fact dates back to at least in
the 1990s by Neal [1995] or even by Bishop [1994]). Today in 2020, there is a still
a controversial debate on this subject: Bayesian machine learning injects some

D I S S E RTAT I O N O U T L I N E 37

knowledge through a distribution prior (not always a Gaussian prior even if
we can recognize this is the best studied distribution and the most frequently
used) for inputs and outputs of statistical predictors. This guiding of the machine
learning at both optimization and prediction steps assumes some knowledge
about input and output data but most of the time that knowledge is not existing
hence the debate. Frequentist neural networks with all their parameters and
Bayesian statistics with all their parametrized distributions might seem uneasy
to coexist in the same unique machine learning method.

Sources of Uncertainty

Beyond frequentist and Bayesian considerations, according to recent research
work [Gal, 2016] (we recommend the reader to read this Ph.D. thesis for details
and comprehensive bibliography about prediction with uncertainty), uncertainty
can be broken down into several facets:

E X T R A P O L AT I O N U N C E RTA I N T Y The prediction could be wrong because test
data do not come from the same distribution as training data. Out from
the training distribution, test data go against one of the most fundamental
machine learning hypothesis to make any system work. For example, on-
line self-adapting systems [Bertsekas et al., 1995] look like reinforcement
learning systems and deal with out of distribution data uncertainty pur-
posefully. During training, prediction systems never see anything but data
coming from training data. Neural networks have the deserved reputation
of quickly over-fitting on training data empirical distribution (if used care-
lessly) which is both a warning against both interpolation and extrapolation
data prediction in worst case scenarios as explained by ? partially avoided
by regularization [Srivastava, 2013]. Overfitting is bad extrapolation in
essence. Thus, neural networks are particularly prone to extrapolation
issues like extrapolation uncertainty.

A L E AT O R I C U N C E RTA I N T Y Some noise could have been introduced in train-
ing data (some wrong coordinates, some wrong labels etc.). Well-studied
statistical machineries like linear and kernel-based support vector ma-
chines [Andrew, 2001] proposed the notion of margin to cope with some
part of that uncertainty but it seems that linking that margin to probability
estimation is still an open research problem even with a logistic regression
loss instead of a hyperplane in practice;

E P I S T E M I C U N C E RTA I N T Y The initial machine learning problem might be ill-
defined: many solutions can solve the problem, so we do not know which
one to choose objectively. For example, the butterfly effect (in layman’s
terms) is a source of epistemic uncertainty against meteorological forecasts
meaning that uncertainty is inherently related to the studied laws of physics

D I S S E RTAT I O N O U T L I N E 38

as a scientific standing point (see for example Epstein [1969]). Thus, the
problem modeling could be unsufficient which introduces randomness.

There exists more precise analysis for describing these interleaved sources of un-
certainty and readers may find more exhaustive research in the work of Kennedy
and O’Hagan [2001]. But all these phenomena boil down to how systems should
and could handle the possible lack of confidence tainting automatic predictions.

2
WA S S E R S T E I N C L U S T E R I N G

Man Gave Names to All the Animals

Bob Dylan in Slow Train Coming,
1979

Joint work with Charles Bouveyron, Pierre-Alexandre Mattei and Andrés Almansa

A B S T R A C T

Clustering is partitionning the data into groups. Deep approaches for clustering
are promising for extending the success of neural networks beyond the limits of
supervised classification. In this chapter, clustering is tackled at the crossroad
of several literatures: auto-encoders, generative adversarial networks (GANs)
for optimal transport, statistical mixture models. Two criteria are studied: (i) the
first generatively minimizes the Wasserstein distance between data and cluster-
separated generated data inspired by the GANs success and (ii) the second
discriminatively maximizes over all partitions the Wasserstein distances between
the associated groups.

These two mechanisms are compatible with model selection according to a
Wasserstein criterion measured on held-out validation data. Competitive results
are achieved on benchmark datasets such as images, sparse and dense data, with
the benefits of selecting the number of groups which promises interesting further
research.

K E Y W O R D S

Clustering, Neural Networks, Wasserstein Generative Adversarial Networks,
Mixture Model, Deep Generative Models, Optimal Transport, Discriminative
Clustering, Generative Clustering

39

I N T R O D U C T I O N 40

2.1 I N T R O D U C T I O N

In a new environment, the first thing a human being (even as a child) does
is mentally grouping the elements of the surroundings and putting names on
those groups. The ambition of this work is to tackle the problem of clustering
within the deep learning framework. While the vast majority of the model-based
clustering approaches focused on the Kullback-Leibler divergence (closely related
to maximum likelihood up to an additional constant term [Bishop, 2006]), we
investigate in this chapter an attempt to operate with the Wasserstein distance in
lieu of Kullback-Leibler divergence for clustering with mixture distributions.

In the first part of this chapter, we take some generative ingredients coming from
the machine learning literature to build our clustering technique as chronologi-
cally, we got inspired by Generative Adversarial Networks (GAN) remarkable
results [Goodfellow, 2016]. In the second part of this chapter, on the contrary, we
choose more discriminative ingredients while still using some of the statistical and
algorithmical tools empowered by the experience gained previously. Recently
and independently from us, we have seen that Mukherjee et al. [2019] successfully
built a better generative clustering work than us but our approach is slightly
different: Jensen-Shanon divergence from the original GAN [Goodfellow et al.,
2014] whereas we used the Wasserstein distance in our case thanks to the work
of Arjovsky et al. [2017].

In the discriminative clustering context, Bouveyron and Brunet [2011] revisited
an ancient approach from Fisher [1936]: separating clusters with a maximum
Kullback-Leibler divergence inter-cluster hence the discriminative point of view.
Likewise and with the same spirit, we propose to maximally separate data into
clusters which is exactly adopting a discriminative angle to clustering instead of
generating closest possible clusters to data which corresponds to a generative
angle. Here, we explore new ways to do clustering with inter-cluster Wasser-
stein distances maximization moving away from the conventional literature by
borrowing ideas from generative model-based approaches and discriminative
methods.

2.1.1 Related Work

Authors such as Flamary et al. [2018] actually did go down that appealing research
road for Wasserstein-distance-based discriminative clustering with simultaneous
linear dimensionality reduction. Indeed, Flamary et al. [2018] adapted the old
latent discriminant analysis of Fisher [1936] but with the Wasserstein distance
instead of a sum of distances approach that is closer to a Kullback-Leibler mindset

while still being both discriminative and model-based. The choice of divergence
(even beyond Kullback-Leibler and Wasserstein) and the choice between gener-
ative and discriminative approaches are scientifically intruiguing and produce
different algorithms in practice as far as clustering is concerned.

I N T R O D U C T I O N 41

The ambition of this work is to tackle clustering within the deep learning
framework because of its large success in supervised learning that we want to
inherit in unsupervised classification (a. k. a. clustering). More precisely, our
motivation does not come from the popularity of the so-called deep learning

approaches but is rather nurtured by the functional expressivity that neural
networks and the fact that the associated scientific community is profuse in free
high-quality toolboxes, which is, of course, impossible to distangle from the deep
learning tremendous popularity.

To achieve these goals, we take advantage of the recent Wasserstein Genera-
tive Adversarial Networks research to estimate these aforementioned generative
and discriminative criteria. The smoothness implied by the deep learning opti-
mization gradual procedures made us think that soft memberships probabilities
should be prefered over discrete categorization output. Handling the Wasserstein
distance meant dealing with transport plans which are uneasy objects intuitively
in terms of software programming. Thanks to the Kantorovich-Rubinstein for-
mulation, we end up with uncoupled lossed for the distributions which is easier
but at the price of an adversarial min-max optimization for the generative case
which is notoriously difficult to monitor in practice (although much research
attention simplified it). For the discriminative case, maximizing the Wasserstein
distance estimated by the Kantorovich-Runbinstein maximization duality is espe-
cially suitable for optimization stability. Clearly, we do benefit from algorithmic
tools from the adversarial neural networks for the generative part of this work
but we still do benefit from this tools for the discriminative easier algorithm
construction, especially for critics (or potential) lipchitzian functions. Indeed,
for the discriminative algorithm, we surprisingly avoid undergoing the diffi-
culty and instability of a min-max (adversarial) optimization with just an overall
maximization instead.

At the very start of this thesis in 2016, in our preliminary experiments, a
Gaussian mixture model trained with Expectation-Maximization [Dempster et al.,
1977] on codes coming from a vanilla MLP1 auto-encoder without convolutions is
able to reach above 80% of unsupervised clustering accuracy on the famous digits
MNIST images dataset2 directly on raw pixels. Encouraged by this surprisingly
good result, we pursue our efforts towards an attempt to take advantage of that
empirical fact in a sound framework.

While supervised classification has been a long-standing problem for many
decades until recently thanks to computational hardware dramatic improve-
ments and a considerable research effort towards statistical tools and algorithms,
unsupervised classification (a. k. a. clustering) is still a difficult area but taking
advantage of the supervised findings proved efficient in terms of research. In fact,
although we can only confirm that clustering is an ill-posed problem as explained
earlier due to the Kleinberg’s impossibility theorem [Kleinberg, 2015], we still find

1 Multi-Layered Perceptron
2 http://yann.lecun.com/exdb/mnist/

I N T R O D U C T I O N 42

it desirable with the same issues that the supervised classification research had to
solve in easier settings because supervised classification has a clearer objective.
Beyond ill-posed problems, the way we tackle model-based clustering in this
work has at least two issues, namely model selection and mixture parametrization
that we brielfy describe here before presenting two techniques, one generative
which we improved thanks into a discriminative one.

2.1.2 Model Selection

In supervised techniques, after training different models with some different
hyper-parameters, we can find th best set of hyper-parameters thanks to (cross-)
validation: measuring the different associated accuracy scores on a labeled held-
out dataset. Unfortunately, this is not a solution in our unsupervised clustering
task where no labels exist (never: neither at training, nor validation and of course
not at testing stages). Nevertheless, we have two ways to circumvent this problem
[Bouveyron et al., 2019]:

W I T H A H E L D - O U T A N D U N L A B E L E D D ATA S E T our model-based techniques
compare distributions within a statistically meaningful quantity (diver-
gence or distance minimization or maximization): one representing the data
and another one representing a fitted model. A natural way to select some
hyper-parameters sets among several trained models is to measure the same
training quantity and same model but with different data corresponding to
the validation dataset. In this work, we develop two techniques: DiWaC
(which corresponds to a discriminative approach) and GeWaC (which cor-
responds to a generative one) and these objectives measure a model-data
fitting Wasserstein score and allow us to measure a model-data fitting score
on unseen and held-out data. In supervised classification, the validation
accuracy in measured from the comparison between pre-annotated labels
and predictions from a model optimized with training data. In our unsu-
pervised clustering case, we allow ourselves to loosely adapt the held-out

validation score expression because we simply measure some Wasserstein
distances between model distributions and validation empirical data dis-
tributions (without labels otherwise this would not be realistic) to check
under- and over-fitting phenomena;

W I T H T O U T A N Y O T H E R D ATA S E T T H A N T H E I N I T I A L T R A I N I N G S E T

a vast literature exists with Kullback-Leibler divergences and Likelihood
Maximization for selecting a good model among many [Schwarz et al., 1978,
Biernacki et al., 2000] using the number of model parameters following
an Occam’s razor for Bayesian Machine Learning to compensate for extra
data validation but to the best of our knowledge, we do not know non-
likelihood-based techniques (here we use Wasserstein distances instead).

I N T R O D U C T I O N 43

We clearly chose the first approach with some held-out unlabeled data with
our Wasserstein distances. Now we explore how we manipulate mixtures distri-
butions thanks to the reparametrization trick.

2.1.3 Reparametrization Trick for a Mixture

In order to handle distributions and more precisely being able to differentiate
our objective functions with respect to the parameters of these distributions for
learning purposes, we adapt the Reparametrization Trick from Kingma et al. [2015]
first used in a variational context3. Indeed, we have chosen a probabilistic frame-
work from which probability distribution parameters are estimated. Usually,
in deep learning, first, the optimization process finds functional parameters for
output prediction thanks to the minimization (or maximization) of an objective
funcion and the notion of gradient gets easy under mild (sub)-differentiability
conditions towards training optimization. In our case, this is different: we do not
optimize functional parameters for an output prediction but we do find density
parameters for a distribution which plays the role of the output prediction in
a probabilistic fashion. In less than a decade, the variational (see the surveys
accomplished by Kingma et al. [2019]) and optimal transport (see the book of
Peyré et al. [2019]) literatures in machine learning got much attention for that
estimation scenario with probability distribution parameters. Instead of using
some sophisticated mathematical tools for differentiating some objective over
some distribution parameters, many researchers used the Reparametrization Trick

thanks to Kingma et al. [2015]: transforming a known pseudo-random noise as
an estimator of the theoreretical random variable for optimization reasons which
makes differentiation easier. Graves [2016] gives a more comprehensive overview
of the problem.

Indeed, Kingma et al. [2015] allow to directly specify a prior distribution
over the code space of a variational auto-encoder (VAE). Inference is done
using a stochastic gradient variational bayesian (SGVB) method, based on a
reparametrization of the variational lower bound. In this work, we will revisit
and adapt this technique called the Reparametrization Trick for our distributions set-
tings. Deep generative models for clustering may be built using a mixture model
as prior distribution. This approach was recently explored by Dilokthanakul et al.
[2016] and Jiang et al. [2016] who used a Gaussian mixture prior.

In practice, the Reparametrization Trick consists in manipulating a random
variable z coming from a parametrized distribution (say Gaussian of mean a and
covariance matrix B = CC⊤ such that z ∼ N (a, B)) thanks to a default random
generator (here ǫ ∼ N (0, I)) that is transformed through (z = a + Cǫ which
simulates z ∼ N (a, B)) in order to get a differentiable version of the random

3 see this scientific blog for details: https://gregorygundersen.com/blog/

2018/04/29/reparameterization

https://gregorygundersen.com/blog/2018/04/29/reparameterization
https://gregorygundersen.com/blog/2018/04/29/reparameterization

G E N E R AT I V E WA S S E R S T E I N C L U S T E R I N G 44

variable we needed. This technique can used in many different ways according
to the literature [Graves, 2016, Doersch, 2016, Blei et al., 2017].

2.2 G E N E R AT I V E WA S S E R S T E I N C L U S T E R I N G

Contemporary to a frenetic rythm of papers about Generative Adversarial Net-
works (GAN) since their spectacular birth [Goodfellow et al., 2014], we admit
we have been deeply influenced especially by the Wasserstein-based approaches
[Arjovsky et al., 2017] on the one hand and the French aura associated to optimal
transport since the acclaimed work of Villani [2008] on the other hand. Indeed,
Arjovsky et al. [2017] proposed a praiseworthy attempt to outline this particu-
larly fast-growing scientific landscape of GANs initiated by Goodfellow [2016]
by insisting on the mathematical quantities minimized between real and gen-
erated beyond the detective-forger metaphor describing the revisited min-max
adversarial optimization method (the forger being the generator function and the
detective being the discriminator or critic function).

At the same time, we wanted to accomplish some model-based clustering
contributions thanks to the statistical legacy summarized by Bouveyron and
Brunet-Saumard [2014b] and later in the commendable book of Bouveyron et al.
[2019]. As clustering and data imitation are both unsupervised tasks, we won-
dered since 2016, how was it possible to accomplish clustering with data imitation
tools such as GANs. Indeed, we investigate in this part a generative approach
by mimicking data that matches best real data with respect to the Wasserstein
distance.

2.2.1 Deep Generative Models for Clustering

In the recent statistical learning literature, there is a significant trend towards
better deep generative models (DGM) based on different inference procedures:
(i) likelihood, (ii) GANs.

First, the goal of the likelihood-based approach is to minimize the Kullback-
Leibler divergence between the original data distribution and the parametrized
model data distribution (which is equivalent to maximizing the likelihood Duda
et al. [2012]). A recent example of that kind is the work of Dinh et al. [2017] that
had to introduce neural networks bijections in order to apply a revisited change of

variable formula on the likelihood mainly because the Kullback-Leibler divergence
requires same distribution supports and thus a bijection is almost mandatory
to parse the entire data space (including the vast empty data zones exactly like
Gaussian mixture where each Gaussian component support is the entire space).

Second, inverting the problem of accessing to the parametrized model data
distribution is to sample generated data from it which what Goodfellow et al.
[2014] astutely proposed with GANs: they minimize a divergence between real
and generated data over the generator function parameters implemented by a

G E N E R AT I V E WA S S E R S T E I N C L U S T E R I N G 45

neural network thanks to a critic function that evaluates that divergence. Since
then, the Wasserstein distance [Gulrajani et al., 2017] through the Wasserstein
GAN (WGAN) was also proposed among other divergences summarized by a
survey done by Goodfellow [2016] gives a glimpse of what is offered by that
thriving on-going scientific literature.

We aim at clustering a dataset of N points x1, ..., xi, ..., xN samples of the random
variable x living in a space X (say R

D) into K homogeneous groups. We suppose
there exists a latent code space Z of a low dimension d (say d = 10 which is
low compared to the original data dimensionality D: d≪ D) such that there is
a mapping D between Z to X connecting the random variable x in X and its
latent counterpart z in Z . We also assume that z follows a mixtureM of rather
common distributions as components (say Gaussian).

At the heart of our Generative Wasserstein Clustering (GeWaC) model, there
is an auto-encoder made of: (i) an encoder network E (parametrized by θE) and
(ii) a decoder network D (parametrized by θD). That auto-encoder plays the role
of a two-ways bridge between the data space and a code (or latent) space which
more akin to clustering alleviating the curse of dimensionality thanks to its lower
dimensionality (d instead of D).

Our model consists in saying that the data have been generated as follows. The
clustering variable c

c ∼ Cat(π) (28)

corresponds to a categorical random variable among K ≥ 2 clusters with prior
proportions defined in vector π (of K positive scalars which sums to 1). In this
generative process, once the cluster k is chosen, one can generate a code in Z
which implies a mixture marginal for z:

z|c = k ∼ gk(.; ξk) z ∼
K

∑
k=1

πkgk(.; ξk) (29)

for the probability distributions (gk)
K
k=1 of each of the K components parametrized

by ξk. Ultimately a point in X is generated:

x|z ∼ δD(z) (30)

To translate into statistics the assumption that the code data lie extremely close to
a low-dimensional manifold, we should have written N (D(z), σ2Ip) instead of a
Dirac δD(z) located on a decoded data point D(z) and them further assume that
σ→ 0. In this context, the posterior probability needed to cluster x is given by

P(c = k|x) = Ez∼p(z|x)[P(c = k|z)] (31)

Although any parametric density functions can be used for each mixture com-
ponent gk, we restrict ourselves in this work to densities allowing the use of the

G E N E R AT I V E WA S S E R S T E I N C L U S T E R I N G 46

x

zc

”

µk, Σk

D(.)

π

σ2

Figure 11: Graphical Model for Data Generation

reparameterization trick [Kingma and Welling, 2013, Kingma et al., 2015] which
has been described above and has a central role in our adversarial optimization
as we will see later.

In the following, we will illustrate our methodology using a mixture of Gaus-
sians in the code space, i.e. we choose:

gk(.; ξk) = N (.; µk, Σk) (32)

(a Gaussian distribution with mean µk and covariance matrix Σk) where (πk)k=1,...,K,
(µk)k=1,...,K, and (Σk)k=1,...,K are the mixture parameters stored in θM. Note that,
beyond the Gaussian mixture prior that we consider here, our approach could
be extended to any mixture of reparametrizable distributions: one might for
example consider a mixture of von Mises as the prior distribution, in order to
obtain interesting visualizations on a hyper-sphere, such as the ones of Davidson
et al. [2018]. Our graphical model displayed in Fig. 11 summarizes the chosen
data generation modelling.

Figure 12: GeWaC Optimization Scheme

In order to fit our generative model, we generate a random variable D(z) to
match x in terms of Wasserstein distance in an adversarial fashion. We only have
access to samples of x (through the dataset) and D(z) (through a pseudo-random

G E N E R AT I V E WA S S E R S T E I N C L U S T E R I N G 47

generator for z and the decoder or generator D), which is a scenario where the
WGANs proved successful as Fig. 12 summarizes the modeling proposed here.

The posterior probability p(z|x) in Eq. (31) is hard to compute because of the
nonlinearity of the decoder. But, as in the work of Kingma and Welling [2013],
we can approximate it using an inference network q(z|x) built according to the
encoder E . As emphasized by Kingma et al. [2015], minimizing the Kullback-
Leibler divergence between the true posterior and q(z|x) leads to minimizing a
penalized quadratic auto-encoder loss. Since σ→ 0, the dominating term in this
loss will precisely be the loss of a vanilla auto-encoder which is what we do in
practice for the sake of simplicity. Eventually, we can compute an approximation
of P(c = k|x) by simply replacing the true posterior by the approximation, which
leads to the maximum-a-posteriori (MAP) rule in code space:

P(c = k|x) ≃
πkgk(E(x); ξk)

∑
K
k′=1 πk′gk′(E(x); ξk)

(33)

following the Bayes formula.
After several attempts, we came up with two fruitful strategies to make our

system work: first, the Concatenation Trick from Dumoulin et al. [2017] to ensure
some consistency between code and data spaces and second, the Reparametrization

Trick from Kingma et al. [2015] to handle parametrized mixture distributions
described earlier.

2.2.2 Concatenation Trick

Our concatenation approach consists in operating a clustering that is consistent
both in the embedding code and input data spaces as described in Fig. 12:

• on the one hand, there is one space (called “code space”) with real encoded
data (random variable E(x)) next to a generated mixture distribution z ∼
M;

• on the other hand, there is an other space (called “input space”) of real
data at hand (random variable x) coexisting with generated decoded signal
D(z).

This mechanism allows our GAN technique to bring real and generated data
distributions together. We use a small dimensionality code space to benefit from
the natural probabilistic interpretation of mixture (e. g. Gaussian) for clustering
in which each code mixture component corresponds to a cluster. To guarantee a
minimum level of consistency for our encoder/decoder system bridging between
our two aforementioned spaces, we use a technique that we dub the “concate-
nation trick” proposed by Dumoulin et al. [2017]. This is necessary to make
sure the encoder E and decoder D functions are reciprocal mathematically almost

G E N E R AT I V E WA S S E R S T E I N C L U S T E R I N G 48

everywhere on the data and code manifolds at hand (see Donahue et al. [2016] for
proof).

On the data side, if we only bring together the distributions of x and D(z),
then this would not have been enough because clustering would take place for
E(x) and z. On the code side, if we only bring together the distributions of E(x)
and z, then this would not have been enough either because true data x would
not be even concerned anymore which would be equivalent to disconnecting
the codes from data. Concatenating data and codes solves these two problems.
Fortunately, in other settings (data imitation and compression), the concatenation
trick formulation of Dumoulin et al. [2017] nicely fits ours, thanks to the idea of
bringing together the distributions of

• x̃ = a(x) =
[

x⊤, E(x)⊤
]⊤
∼ p̃ considered as real with x representing data;

• ỹ = b(z) =
[

D(z)⊤, z⊤
]⊤
∼ q̃ considered as generated with z sampled over

a parametrized mixture q =M(π, µ, Σ) = ∑
K
k=1 πkN (µk, Σk).

by minimizing the Wasserstein distance between p̃ and q̃ over all parameters
(mixture, encoder and decoder). This way, we elegantly get the almost everywhere

reciprocity between the encoder E and decoder D on the data manifold adapting
the work of Dumoulin et al. [2017] and also Donahue et al. [2016].

The nature of the chosen GAN (Wasserstein GAN or other) is not crucial here
as Arjovsky et al. [2017] explained that the original GAN [Goodfellow et al., 2014]
uses the Jensen-Shannon divergence and WGAN uses the Wasserstein distance
(which is a fortiori a divergence) but Dumoulin et al. [2017] empirically show the
improvement attributed to the concatenation trick vs. without it in terms of image
rendering. Interestingly, concatenation becomes a key element in our case to make
the whole system work because of our clustering goal (that Dumoulin et al. [2017]
do not have) to maintain data-code consistency through the encoder/decoder
reciprocity. Intuitively, if the concatenated variables in the previous bulletted list
have similar distributions with respect to the chosen GAN-specific divergence
at hand, then the marginals are close too. Thus, our use of the concatenation
trick gets handy because it ensures that our pair of encoder/decoder functions
(E ,D) still behaves in a reciprocal fashion in spite of the mixed GAN and mixture
framework in a surprisingly stable manner in terms of optimization.

In fact, we first proposed a model without concatenation which meant the
adversarial WGAN optimization did not involved the encoder E as only the
distribution of x and D(z) were being put together: this was not principled
especially because the clustering decision rule given in Eq. (33) involves E which
forced us to retrain a final post-processing with an adhoc autoencoder loss with
all parameters fixed except the ones of E for what seems to be an update with
respect to the decoder D. The contribution of Dumoulin et al. [2017] made all
these considerations disappear in an easy yet principled fashion.

G E N E R AT I V E WA S S E R S T E I N C L U S T E R I N G 49

Now, we minimize the Wasserstein distance between these two augmented
data associated distributions thanks to the Kantorovich-Rubinstein duality with a
WGAN [Arjovsky et al., 2017, Salimans et al., 2016, Gulrajani et al., 2017, Miyato
et al., 2018] :

max
‖∇C‖≤1

Ex∼p

[

C
(

a(x)
)]

−Ez∼q

[

C
(

b(z)
)]

(34)

with C called the critic and implemented in practice by a neural network of
parameters θC and constrained as 1-Lipschitzian by a chosen method among
weight-clipping [Arjovsky et al., 2017], augmented Lagrangian [Gulrajani et al.,
2017] or with more stability from online power iteration [Miyato et al., 2018].

Assuming that the codes z come from a mixture of Gaussians with full co-
variance matrices Σk ∈ R

d×d (d ≪ D), for each k among the K components the
corresponding variable zk follows:

yk = b(zk) =
[

D(Sk × e + µk)
⊤, (Sk × e + µk)

⊤
]⊤

(35)

where e ∼ N (0d, Id) and Sk is a Cholesky decomposition-inspired representation
(with non-zeros only in the lower-triangular part and strictly positive diagonal
entries guaranteed by exponentials first and then affine-transformed sigmoids for
better eigenvalues amplitude control) of the full covariance Σk = Sk × S⊤k such
that the transformed random variable Sk × e + µk behaves as if it comes from
N (µk, Sk × S⊤k) = N (µk, Σ

⊤
k) in the spirit of the Reparametrization Trick [Kingma

and Welling, 2013, Kingma et al., 2015] for unconstrained optimization which is
much easier and well studied in stochastic gradient settings.

All the equations above meet in:

L(θE , θD, θM, θC) = Ex∼p

[

C

(

[

x⊤, E(x)⊤
]⊤
)]

(36)

−
K

∑
k=1

πk ×Ee∼N (0,Id)
[C ([D(Sk × e

+µk)
⊤, (Sk × e + µk)

⊤
]⊤
)]

and thus we optimize:

min
θE ,θD ,θM

max
θC
L(θE , θD, θM, θC) (37)

Indeed, maxθC L(θE , θD, θM, θC) corresponds to the Wasserstein distance between

real data
[

x⊤, E(x)⊤
]⊤

and generated data
[

D(Sk × e + µk)
⊤, (Sk × e + µk)

⊤
]⊤

by the mixtureM and decoder D.
Originally Wasserstein GAN uses a simple fixed distribution (Gaussian or

uniform) for the random noise generator that is transformed by a neural network

G E N E R AT I V E WA S S E R S T E I N C L U S T E R I N G 50

called the generator to fit the data distribution in the Wasserstein sense. Here, we
use a tunable mixture distribution instead for clustering purposes. In a regular
Wasserstein GAN, the fixed distribution has no parameter taking part in the
data generation mechanism. For that reason among other vocabulary reasons, in
our GeWaC algorithm, we call generator the union of the parametrized mixture
distributionM associated with the decoder neural network D (that brings the
noise generated from the mixture into fake data).

The mechanism that we dub concatenation trick proposed by Dumoulin et al.
[2017] naturally enforces the encoder and the decoder being reciprocal which
can be proven in a way that is very close to what Donahue et al. [2016] did for
interested readers.

2.2.3 Algorithm

Our GeWaC algorithm can be decomposed in three successive steps:

1. Auto-Encoder Initialization

We train a classic auto-encoder (E ,D) (for an encoder E and decoder D):

(θ0
E , θ0
D) = arg min

θE ,θD
Ex∼p

(

‖D ◦ E(x)− x‖2
2

)

(38)

2. EM-based Gaussian mixture initialization

We fit a Gaussian mixture model

M
(

SoftMax(α), µ, (Sk × S
⊤
k)k=1,...,K

)

(39)

parametrized by θM = (αk, µk, Sk)k=1,...,K with the Expectation-Maximization
algorithm [Dempster et al., 1977] on the encoded data:

θ0
M = arg max

θM
Ex∼p

[

log

(

K

∑
k=1

πk ×N (µk, Sk × S
⊤
k)
(

E0(x)
)

)]

(40)

where the covariance matrices are parametrized by Σk = Sk × S⊤k to save
tedious symmetry and eigenvalues signs constraints and the proportions
are parametrized by π = SoftMax(α) for easily imposing 1-sum positive
constraints on the proportions.

3. Critic Initialization

The critic function C role is to estimate the Wasserstein distance in order to
get good gradient estimation for the rest of the parameters. The previous
steps intialized a generator process that we should evaluate first before
taking the gradient from it for the other parameters:

θ̂C = arg max
θC
L(θ0

E , θ0
D, θ0

M, θC) (41)

G E N E R AT I V E WA S S E R S T E I N C L U S T E R I N G 51

from Eq. (37) which is optimized thanks to the algorithm 1 calling the
algorithm 2 but without 3.

4. Clustered Data Generation

The previous steps made this final step well initialized to optimize all the
parameters thanks to the algorithms 1 calling both 2 and 3:

(θ̂E , θ̂D, θ̂M) = arg min
θE ,θD ,θM

max
θC
L(θE , θD, θM, θC) (42)

Our GeWaC technique is “end-to-end trainable”. Steps 1, 2 and 3 are just
reasonable initializations for step 4. Finally, we use the MAP rule in the code
space (Bayes formula) in order to finally cluster the data points which makes our
simple approach after training time particularly fit for clustering. For training
this generative clustering, the optimization is orchestrated by algorithm 1 that
calls Wasserstein distance estimation updates in iterations involving only critics
neural networks parameters which is described by algorithm 2 and minimizes
the Wasserstein distance estimates with respect to all parameters in algorithm 3
excluding the ones of the critics.

Algorithm 1 Optimization algorithm

1: while θE , θD and θM have not converged do

2: Sample a mini-batch of size B× K from the dataset xi,ki =
1, . . . , B k = 1, . . . , K

3: Compute the critic evaluation on the mini-batch of points
and codes concatenation

ai,k ← C([x
⊤
i,k, E(xi,k)

⊤]⊤)

i = 1, . . . , B k = 1, . . . , K

4: for j = 1, . . . , Ncritic do

5: Wasserstein Estimation Step
6: end for

7: Wasserstein Minimization Step
8: end while

G E N E R AT I V E WA S S E R S T E I N C L U S T E R I N G 52

Algorithm 2 Wasserstein Estimation Step

1: Free critics gradients accumulators
2: Sample some B × K Gaussian noise codes from a pseudo-

random generator

ei,k ∼ N (0, Id)

i = 1, . . . , B k = 1, . . . , K

3: Compute the critic evaluation on the mini-batch of decoded
noise and its original version concatenation

bi,k ← C([D(Sk × e + µk)
⊤, (Sk × e + µk)

⊤]⊤)

i = 1, . . . , B k = 1, . . . , K

4: Compute

w←
1

B× K

B

∑
i=1

K

∑
k=1

ai,k −
K

∑
k=1

πk
1
B

B

∑
i=1

bi,k

5: Perform a gradient ascent step with w over θC

2.2.4 Model Selection for GeWaC

Once we get our trained data generator, we can measure the Wasserstein distance
between generated data and some held-out validation data distributions (that
we can sample from) to check under/over-fitting and ultimately choose the
number of classes or the architecture of neurons and layers. There is one subtlety
though: we must measure non-augmented data Wassertein distance between
non-augmented generated data and decoded mixture noise with recomputed
proportions from validation memberships probabilities means. Otherwise, the
encoder-decoder part of our systems will not be fairly compared: by removing the
dimensionality augmentation, we make possible the selection of the coding space
dimensionality for example. Thus, algorithmically, transforming our training
procedure into a validation one consists in keeping algorithms 1 and 2 and leaving
3 and the augmentation parts.

We could consider our generative attempt as a natural extension of what
the Expectation-Maximization for the Gaussian mixture model algorithm does
with the Kullback-Leibler divergence but with stochastic gradient descent for
the Wasserstein Distance. One difficulty appears though from mixture distri-
butions being problematic because of the partial discreteness of the parameter

G E N E R AT I V E WA S S E R S T E I N C L U S T E R I N G 53

Algorithm 3 Wasserstein Minimization Step

1: Free encoder, decoder and mixture gradients accumulators
2: Sample some B × K Gaussian noise codes from a pseudo-

random generator

ei,k ∼ N (0, Id)

i = 1, . . . , B k = 1, . . . , K

3: Compute the critic evaluation on the mini-batch of decoded
noise and its original version concatenation

bi,k ← C([D(Sk × e + µk)
⊤, (Sk × e + µk)

⊤]⊤)

i = 1, . . . , B k = 1, . . . , K

4: Compute

w←
1

B× K

B

∑
i=1

K

∑
k=1

ai,k −
K

∑
k=1

πk
1
B

B

∑
i=1

bi,k

5: Perform a gradient descent step with w over (θE , θD, θM)

space [Graves, 2016]. Specifically, mixture weights are particularly difficult to
optimize. Consequently, Dilokthanakul et al. [2016] assume that these weights
are known beforehand, which is not always the case in real-world problems.
Jiang et al. [2016] propose a method for optimizing these weights but does not
provide empirical evidence on imbalanced data to support this scheme. On our
side, we did manage to get reasonable results but without completely being
fair about proportions: if we trust our careful initialization procedures and let
proportions have very low learning rate, then in practice, it is as if we freeze these
proportions to a constant vector value although we did not realize it at first while
being deceived by apparently good results except when initial proportions are
not valid.

2.2.5 Collapsing Effects

Since its introduction of GANs, Goodfellow et al. [2014] warned the reader about
what they called the “Helvetica scenario” in which their generator is trained too

often compared to the not-enough-updated discriminator (a word that is translated
by critic since Wassertein GANs [Arjovsky et al., 2017]). Indeed, a generator can
intuitively be good at generating data from a specific region of space without

D I S C R I M I N AT I V E WA S S E R S T E I N C L U S T E R I N G 54

being able to generalize to other space zones of data as the discriminator is
fooled when comparing good localized generated data compared to real data.
This is a kind of a spatial unsupervised over-fitting that is commonly defined in
supervised learning. We end up with a GAN that gets unable to generate the
same variety of data as real data hence the collapsing effect phenomenon name.

In our GeWaC technique, we observed a similar problem on the mixture side.
Indeed, because of the richness of potential functions expressed by neural net-
works, only one obviously non-clustering mode of a mixture is enough to go
through the decoder and parse the whole data manifold space. We decided to give
up this technique for that reason to prefer a discriminative approach that does not
need to produce data. In fact, it would be interesting to adapt what Mukherjee
et al. [2019] recently did but for the Wasserstein distance in order to see if their
one-hot canonical latent augmentation clustering encoding circumevents our
generative problems.

2.3 D I S C R I M I N AT I V E WA S S E R S T E I N C L U S T E R I N G

In this section, we do clustering with neural networks thanks to a discriminative
(instead of generative) objective optimization: clusters distributions form mixture
components like Fraley and Raftery [2002], Bouveyron et al. [2019] did in the past.
The discriminative aspect comes from the fact that we are trying to optimally
separate the data clusters in terms of Wasserstein distance (benefiting from the
recent rising of deep learning scientific techniques since Arjovsky et al. [2017],
Gulrajani et al. [2017], Miyato et al. [2018] but also Genevay [2019]) in a one-versus-

rest fashion.
In a discriminative clustering, there is a fundamental limitation of Kullback-

Leibler divergence techniques: distributions must share same (infinite) support.
Indeed, if density supports are not the same, the Kullback-Leibler divergence is
not defined (the logarithm of a zero probability being −∞) so in these circum-
stances we can (must) use infinite support densities such as Gaussians or related
to artificially separate clusters that have mathematically same support which is
not natural: How come separated clusters share same model density supports?
The unsatisfactory answer consists in having low density separation zones be-
tween them. From that perspective, Wasserstein distances are better because
they are well-defined for non-equal density supports which constitutes its main
advantage thanks to its geometric properties. Clusters can now mathematically
have model densities without any overlap.

We propose an algorithm to perform unsupervised classification (a.k.a. clustering)
within this framework that we call “DiWaC” for Discriminative Wasserstein
Clustering. Using the idea of separating clusters as a discriminative objective
function is not new (see for example Spectral Clustering [Von Luxburg, 2007] or
DIFFRAC [Bach and Harchaoui, 2008]) but the fact that we handle distributions

D I S C R I M I N AT I V E WA S S E R S T E I N C L U S T E R I N G 55

allows to enable both out-of-sample clustering and model selection at the same
time which makes our technique appealing even in large scale settings.

This work, to the best of our knowledge, is the first that maximizes Wasserstein
distances between clusters in a discriminative manner. The advantage of maxi-
mizing in our case is that the Kantorovich-Rubinstein formulation makes it an
overall maximization which is good news in terms of programming and conver-
gence ease compared to usual (and painful to monitor and debug) min-max-type
of optimization in Generative Adversarial Networks.

DiWaC is built at the crossroads of the auto-encoders, generative adversar-
ial networks, optimal transport and statistical mixture models literatures. We
recall that an auto-encoder is a neural network made up of two parts: on the
one hand, an encoder that transforms the initial data into a smaller code space
followed by a decoder that sends the codes back to the initial data space by
trying to reconstruct them approximately in the sense of a quadratic loss (for
a conventional auto-encoder), a Kullback-Leibler divergence (for a variational
auto-encoder [Kingma and Welling, 2013]) or the Wasserstein distance (for an
adversarial auto-encoder [Tolstikhin et al., 2018]).

By presenting clustering in a discriminative fashion, we end up by defining
a good data partitionning in clusters as one whose components are as far apart
as possible from each other. Hence, mathematically, we maximize the weighted
sum of Wasserstein’s distances between each cluster components and all others.
Thanks to Kantorovich’s formulation of Wasserstein’s distances, the optimization
of this criterion is a maximization (without minimization) on probabilities and
critics functions (also called potential in the optimal transport literature). Thus,
we benefit from the algorithmic tools coming from adversarial neural networks,
especially for the critics Lipschitzian functions [Miyato et al., 2018], without
suffering from the hardship of an adversarial optimization (as there is only
maximization and no minimization any more).

2.3.1 Wasserstein Distances between Clusters

Concretely, clustering is the task of gathering the data x in K ≥ 2, K ∈ N well sep-
arated groups but here we relax the hard notion of group into soft memberships
through:

τ(x) = [P(c = 1|x), . . . P(c = k|x), . . . , P(c = K|x)]⊤ (43)

The number K of groups can be found through model selection which is explained
later (section 2.3.5)

Through clustering we infer a function to describe hidden structure from unla-
beled data. We aim at clustering a dataset of N samples x1, ..., xi, ..., xN of the ran-
dom variable x (of distribution p) living in a space X (say X = R

D) in K groups
(or clusters). Usually, in the literature in Machine Learning (a fortiori including

D I S C R I M I N AT I V E WA S S E R S T E I N C L U S T E R I N G 56

Deep Learning), scientists minimize probability divergences, namely: Kullback-
Leibler divergence which is equivalent to maximizing the likelihood in many
cases (with a wide range of tools from logistic regression i. e. cross-entropy loss
for classification to Expectation-Maximization for clustering), the Jensen-Shannon
divergence in Generative Adversarial Networks [Goodfellow et al., 2014] as re-
marked and extended to Wasserstein distance (which is thus also a divergence
with nicer and geometric properties) by Arjovsky et al. [2017]. The originality
of the current work in clustering settings where the grouping are unknown lies
on the maximization of divergences between groups instead of the usual min-
imization of divergences. This makes our contribution close to Discriminative
Latent Models [Bouveyron and Brunet-Saumard, 2014a], Fisher Expectation Max-
imization [Bouveyron and Brunet, 2012] and Spectral Clustering [Von Luxburg,
2007] and we took some ideas from this vein of research (especially about how we
handle proportions to normalize our objectives as we will see). The Wasserstein
distance is also a divergence and thus has better properties than the Kullback-
Leibler which constitute the main motivation of this work: mainly symmetry and
geometric interpretations such as the triangle inequality and being defined even
when the compared distributions do not have the same support.

With this research background in mind, we choose to still benefit from the
Wasserstein generative adversarial networks (WGAN) without being adversarial.
Indeed, we just see WGAN as an algorithmic tool to manipulate Wasserstein
distances for large scale datasets thanks to its neural networks stochastic opti-
mization. Thus a probabilistic configuration is needed and we choose the one
of mixture models which actually stood the test of time in several research mile-
stones done by Machine Learning pioneers like Dempster et al. [1977], Lloyd
[1982], Blei et al. [2003], Jain [2010]. Let us model our data as coming from a
mixture distribution of K unknown bu separated components p1, . . . , pk, . . . , pK

weighted by proportions π1, · · · , πk, · · · , πK:

x ∼ p =
K

∑
k=1

πk × pk (44)

which uses the classical data generation model of mixture models [Bouveyron
et al., 2019]:

• Pick a cluster index k from the multinomial distribution of parameters π

• Pick a data point x from the data component distribution pk

Identifying the different components distributions pks (and the proportions πks)
is recasting clustering in a probabilistic manner. Based on the presented mixture
model, we try to maximize the Wasserstein distances between the different pks
themselves.

Meanwhile, thanks to the Bayes formula, we can get:

pk(x) = p(x)×
τk(x)

πk
(45)

D I S C R I M I N AT I V E WA S S E R S T E I N C L U S T E R I N G 57

and similarly, we define:

p̄k(x) = p(x)×
1− τk(x)

1−πk
(46)

the distribution of the remaining points without the kth group. A reasonable ob-
jective appears to consist in simultaneously maximizing all inter-cluster Wasser-
stein distances W(pk, p̄k). Indeed, distributions pks with highly overlapping
support correspond to low inter-cluster Wasserstein distances because each com-
ponent corresponds to a cluster. In contrast, well separated distributions pks
correspond to bigger inter-cluster Wasserstein distances W(pk, pk′) and W(pk, p̄k)
(with k 6= k′).

2.3.2 Unormalized and Normalized sum of inter-Cluster Wasserstein Distances

We previously established that inter-cluster Wasserstein distances maximization
for building a training objective could be interesting for clustering. In this part of
the current work, we present two attempts: one simple sum and one weighted
sum to combine the inter-cluster Wasserstein distances.

Definition 1. Unormalized sum of inter-cluster Wasserstein distances

Lu(p1, . . . , pk, . . . , pK) =
1
K

K

∑
k=1

W(pk, p̄k) (47)

Definition 2. Normalized sum of Wasserstein inter-cluster distances

Ln(p1, . . . , pk, . . . , pK, π1, . . . , πk, . . . , πK) =
K

∑
k=1

πk× (1−πk)×W(pk, p̄k) (48)

In these two objectives definitions, we maximize over p1, . . . , pk, . . . , pK and
π1, . . . , πk, . . . , πK verifying:

• π1 + π2 = 1 with π ∈ R
2
+

• p = π1 × p1 + π2 × p2

Sanity Checks

Thanks to a theoretical example with an obvious clustering outcome one could
wish, we now try to understand the interests of choosing one of the two defined
objectives. In R

2, let us take a data distribution made of Gaussian and Dirac
components:

p =
1

α + β + 1
× (αN (02, σ× I2) + βN (b, σ× I2) + δc) (49)

D I S C R I M I N AT I V E WA S S E R S T E I N C L U S T E R I N G 58

with α = 104, β = 2× 104, σ = 10−3, b = [m, 0]⊤ and c = [−M, 0]⊤ (m = 9 and
M = 100).

This almost Gaussian mixture case (corrupted by a down-weighted and far-
located Dirac distribution), it is still interesting to analyze what would happen
when clustering with K = 2 groups making Eq. (47) ending up with the maxi-
mization of W(p1, p2) (p1 and p2 being unknown).

We consider two candidate clusterings to understand how compatible is the
objective what we would expect as a good solution.

Example 1. Ideally, a satisfactory solution would be:

p
good
1 =

1
α + 1

× (αN (02, I2) + δc) and p
good
2 = N (b, I2) (50)

with proportions

π
good
1 =

α + 1
α + β + 1

≃ 0.33 and π
good
2 =

β

α + β + 1
≃ 0.66 (51)

(switching the indices 1 and 2 does not break any generality). Indeed we be-
lieve that the oulier Dirac distribution δc should be neglectable (thanks to the
coefficients α and β being much bigger than one).

In other words, this would correspond to each cluster being associated with
a single Gaussian beacuse the contribution of the Dirac in the mixture behaves
like an outlier. Thus, we investigate here a rudimentary sanity check towards
oultliers robustness.

Example 2. There is a bad clustering candidate that unfortunately gets a better
score with respect to Eq. (47):

pbad
1 =

1
α + β

× (αN (02, I2) + βN (b, I2)) and pbad
2 = δc (52)

with proportions

πbad
1 =

α + β

α + β + 1
≃ 0.99 and πbad

2 =
1

α + β + 1
≃ 3.3× 10−5 (53)

In the Normalized Spectral Clustering literature (well explained by Von Luxburg
[2007]), a similar normalization is used for more robust clustering with respect to
outliers.

Indeed for Eq. (47), the good and bad solutions give approximately (thanks to
the chosen caricatural coefficients α, β, σ, m and M):

Lu(p
good
1 , p

good
2) ≃ 9 (54)

D I S C R I M I N AT I V E WA S S E R S T E I N C L U S T E R I N G 59

Lu(pbad
1 , pbad

2) ≃ 100 (55)

which selects the bad candidate. This prooves the sensitivity of the unormalized
objective in Lu with respect to the outlier Dirac distribution in Eq. (49).

In objectives represented in Lu and Ln , the clusters are separated but Ln avoids
degenerate clustering candidates thanks to the πk × (1−πk) term. In our sanity
check example, the previous bad clustering is smashed out by the normalization
in Ln , the first cluster occupies more than π1 ≃ 99% of the data leaving the
second singleton set with less than π2 ≃ 0.003%) whereas the unormalized Lu

objective rewards a bad degenerate candidate solution. Indeed for the normalized
objective Ln gives approximately:

Ln(p
good
1 , p

good
2 , π

good
1 , π

good
2) ≃ 3.92 (56)

Ln(pbad
1 , pbad

2 , πbad
1 , πbad

2) ≃ 5.9× 10−3 (57)

selecting the expected good candidate clustering.

One-vs-One and One-vs-Rest Strategies

There is also a more principled way to look at our normalized objective Eq. (48)
and the πk × (1−πk) term. In supervised classification (say logistic regression
nicely explained by Hastie et al. [2005]), we have one-vs-one and one-vs-rest
strategies that we use here. More concretely, in a one-vs-one strategy, it would be
reasonable to consider the probability πk × (1−πk′) of choosing one point from
cluster k and the other point from cluster k′ in an independent fashion.

Now we imagine two data generation models to add some theoretical justifica-
tion to our objective Eq. (48). First, we can imagine a generation model:

1. Sample two clusters indices (k, k′) independently from the multinomial
distribution of parameters π

2. Observe the Wasserstein distance W(pk, pk′) between the components/clus-
ters associated with k and k′ (if k = k′ the case is obvious since W(pk, pk) =
0)

The observed Wasserstein distance is a random variable whose mean is:

LOvO
n (p1, . . . , pk, . . . , pK, π1, . . . , πk, . . . , πK) =

K

∑
k=1

K

∑
k′=1

πk×πk′×W(pk, pk′)

(58)

D I S C R I M I N AT I V E WA S S E R S T E I N C L U S T E R I N G 60

which is the mean one-vs-one inter-Wasserstein distance between clusters selected
by a multinomial distribution of parameter π.

The same reasoning can be done with a second and slightly different data
generation model:

1. Sample two clusters indices (k, k′) independently from the multinomial
distribution of parameters π

2. Observe the Wasserstein distance W(pk, p̄k) between the kth component
and the rest

The observed Wasserstein distance is a random variable whose mean is now:

LOvR
n (p1, . . . , pk, . . . , pK, π1, . . . , πk, . . . , πK) =

K

∑
k=1

πk× (1−πk)×W(pk, p̄k)

(59)

which is the mean one-vs-rest inter-Wasserstein distance between clusters se-
lected by a multinomial distribution of parameter π. This one-vs-rest approach is
preferred rather than the one-vs-one for combinatorial reasons as K grows. One
can notice that the previous normalized Wasserstin sum definition is equal to
that one-vs-one point of view definition LOvR

n = Ln but presented in a different
fashion.

Decoupling the compared distributions in the Wasserstein distance computa-
tion is easier with the euclidean ℓ2 distance. Indeed, the Kantorovich-Rubinstein [Dud-
ley, 2018] as it is already used in WGAN [Arjovsky et al., 2017] tells us a decoupled
re-definition:

W(µ, ν)
KR
= sup
C∈Lip-1

Ex∼µC(x)−Ey∼νC(y) (60)

where Lip1 is the 1-Lipschitz functions set. Thus, we can write that for three
distributions q1, q2, q3 and proportions κ1, κ2 (with κ1 + κ2 = 1):

W(κ1 × q1 + κ2 × q2, q3) = sup
C∈Lip-1

Ex∼κ1×q1+κ2×q2C(x)−Ey∼q3C(y) (61)

but

Ex∼κ1×q1+κ2×q2C(x) =
∫

RD
C(x) (κ1 × q1(x) + κ2 × q2(x)) dx (62)

= κ1 ×
∫

RD
C(x)× q1(x)dx + κ2 ×

∫

RD
C(x)× q2(x)dx

= κ1 ×Ex∼q1C(x) + κ2 ×Ex∼q2C(x)

(63)

and

Ey∼q3C(y) = (κ1 + κ2)×Ey∼q3C(y) (64)

D I S C R I M I N AT I V E WA S S E R S T E I N C L U S T E R I N G 61

thus

W(κ1 × q1 + κ2 × q2, q3) = sup
C∈Lip-1

Ex∼κ1×q1+κ2×q2C(x)−Ey∼q3C(y) (65)

= sup
C∈Lip-1

κ1 ×
(

Ex∼q1C(x)−Ey∼q3C(y)
)

+κ2 ×
(

Ex∼q2C(x)−Ey∼q3C(y)
)

≤ κ1 × sup
C∈Lip-1

Ex∼q1C(x)−Ey∼q3C(y)

+κ2 × sup
C∈Lip-1

Ex∼q2C(x)−Ey∼q3C(y)

because the maximum of a sum is lower or equal than the sum of each term
maxima (which is also true with supremum instead of maximum) which gives

W(κ1 × q1 + κ2 × q2, q3) ≤ κ1 ×W(q1, q3) + κ2 ×W(q2, q3) (66)

and finally implies that

LOvR
n (p1, . . . , pK, π1, . . . , πK) ≤ L

OvO
n (p1, . . . , pK, π1, . . . , πK) (67)

and thus maximizing the lower complexity one-vs-rest objective is maximizing
a lower bound of the one-vs-one objective which is usual in Machine Learning.
In this section, we tried to provide some theoretical justification for our training
objective and it is time to tackle the deep learning angle of it.

2.3.3 Estimating Wasserstein Distances with Deep Learning

In terms of neural network optimizatin, if we sum up everything we described,
membership probabilities τk(x) = P(c = k|x) are the unknown function outputs
of our clustering formulation which can be represented thanks to a positive
function f chained with a sum-1 normalization layer:

∀k ∈ J1, KK τk(x) =
fk(x)

∑
K
ℓ=1 fℓ(x)

(68)

On the Kantorovich side, the critics Ck are also neural networks (of parameters
θCk

) but with a 1-Lipschitz property gracefuly provided by spectral normalization
for each linear (or convolutional) non-activation layers thanks to a simple yet
efficient power iteration technique developped recently by Miyato et al. [2018]
which gives enough stability to face large scale datasets in the work of Brock
et al. [2019]. Injecting all these formulas in Ln = LOvR

n , the maximization over all
parameters θ (concatenating the θ fk

s and the θCk
s) becomes (in several lines):

LOvR
n (p1, . . . , pK, π1, . . . , πK) = Ex∼p

[

K

∑
k=1

(

τk(x)−πk

)

× Ck(x)

]

(69)

D I S C R I M I N AT I V E WA S S E R S T E I N C L U S T E R I N G 62

while proportions πk are equal to Ex∼p

(

P(c = k|x)
)

which is kept and main-

tained à la online k-Means [Bottou and Bengio, 1995] in their means updates
(which can be seen like an Optimal Control [Bertsekas et al., 1995] self-regulated
closed loop mechanism).

Suppose that an oracle gave us the optimal (π∗, θ∗E , θ∗M) and we keep them
fixed, does adding a constant of the Cks critics functions could diverge to ±∞?
The answer is no because, by definition of the proportions in the mixture, we
know that Ex∼p [τk(x)] = πk which means that the sign of τk(x)−πk cannot be
constant (it can be always zero but that is an easy case for what we need to prove).
Thus, adding a constant bk to Ck will not change the objective. (and adding a
constant multiplier ak to a valid 1-Lipschitz Ck would violate that 1-Lipschitz
constraint).

More generally, the fact that we maintain the null equalities

∀k ∈ J1, KK Ex∼p [τk(x)−πk] = 0 (70)

(thanks to Bottou and Bengio [1995]) and the Lipschitz property together prevent
the critics Cks f rom diverging;

The objective of Eq. (69) favors τk(x) to be far from πk thanks to the maxi-
mization: (i) if cluster memberships τk(x) are too close to their means πk, then
the objective would be close to zero (its lower bound because a positive linear
combination of Wasserstein distances Eq. (69) is non-negative); (ii) when τk(x)
is high above its mean πk (bounded by 1), Ck(x) will be high and when τk(x)
is low under its mean (bounded by 0), Ck(x) will be low too. Accordingly, it is
interesting to see that Ck(x) can be seen as a relaxed decision function (i. e. high
for points in kth cluster and low for the other clusters, but bounded in terms of
variation due to its Lipschitzian property);

Overlapping Gaussian components of mixtureM are avoided. Intuitively, if
we take a region of the data space where τk(x) and τℓ(x) (with k 6= ℓ) are high
(meaning E(x) is on an overlapping zone between two Gaussian components
k and ℓ), then the Wasserstein distances W(pk, p̄k) and W(pℓ, p̄ℓ) (parts of the
objective sum) could have been even more maximized on this region because
they are related to W(pk, pℓ). Thus our algorithm favors partitions over covers
(in spite of our soft relaxation of memberships).

2.3.4 Algorithm

Algorithm 4 optimizes Eq. (69) which has only a maximization steps which
provides a certain engineering ease compared to the min-max optimization
scheme required for the GANs. Nevertheless, initialization routines turned out
to be crucial in practice. For this highly non-convex optimization, suggest three
successive careful initialization steps before the real opitmization.

The optimization of Eq. (69) that we want to accomplish has no guarantee
to converge in a global extrema with our neural networks approach, which is

D I S C R I M I N AT I V E WA S S E R S T E I N C L U S T E R I N G 63

why careful initialization is crucial. That is why our DiWaC algorithm can be
decomposed in four successive steps (three for intializations and one for the real
optimization). In theory, if we had a universal (i. e. regardless of the convexity)
ideal optimizer at our disposal, then the three first steps would be useless but to
avoid useless and spurious local minima, we do a three steps initialization for a
final one.

1. Auto-encoder initialization We train a classic auto-encoder (E ,D) (for an
encoder E and decoder D parametrized respectively by θE and θD):

(θ0
E , θ0
D) = arg min

θE ,θD
Ex∼p‖D ◦ E(x)− x‖2

2 (71)

using an auto-encoder initialization is interestingly reminiscent to 1990s
ans 2000s pretraining for neural networks at a time when training time
was a much more a burden than today (although Goodfellow et al. [2016]
also mention better activation functions, weight initialization, variants of
gradient descent and regularization methods, we empirically observed that
pretraining is still benefitial for many scenarios both in terms of performance
and sometimes even overall training time).

2. EM-based Gaussian mixture codes initialization We fit a Gaussian mix-
ture modelM of proportions ω, means µ and covariance matrices S with
the Expectation-Maximization algorithm [Dempster et al., 1977] on the
encoded data E(x):

θ0
M = arg max

θM
Ex∼p

[

log

(

K

∑
k=1

ωk ×N (E0(x); µk, Sk × S⊤k)

)]

(72)

where θM = (ωk, µk, Sk)k=1,...,K. We also precise that this EM-GMM op-
timization is itself initialized with k-Means++ [Arthur and Vassilvitskii,
2006]4 on the codes (or encoded inputs that lie at the bottleneck of the
previous step’s autoencoder).

3. Critics initialization We define K critics functions (Ck)k=1,...,K implemented
thanks to Miyato et al. [2018] and parametrized by θC that would estimate
the Wasserstein distances weighted sum with memberships probabilities
provided by the previous step’s EM. Indeed, we define clustering probabil-

ity functions τk(x) =
ωk×N (E(x);µk,Sk)

∑
L
ℓ=1 ωℓ×N (E(x);µ

ℓ
,Sℓ)

to maximize over θC :

θ0
C = arg max

θC
Ex∼p

[

K

∑
k=1

(

τk(x)−πk

)

× Ck(x)

]

(73)

Indeed, we recall that the critics functions Cks are just a convenient tool
to estimate the Wasserstein distances. With bad critics, the gradient of

4 EM-GMM and k-Means++ provided by scikit-learn [Pedregosa et al., 2011]

D I S C R I M I N AT I V E WA S S E R S T E I N C L U S T E R I N G 64

the objective over the memberships probabilities parameters would be
also wrong which is bad news especially when memberships functions are
previously and nicely initialized. This suggests this warmup step 3 before
the real clustering optimization.

Without that warm-up step 3 (right before the real step 4), we would deterio-
rate the previous clustering initializations quality provided by steps 1 and 2
(that is dubbed the “AE + GMM” initialization by Xie et al. [2015]) because
the critics would not be trained enough to estimate that good clustering
while still inflicting ignorant gradient steps on the clustering functions. To
avoid such a bad scenario after steps 1 and 2, the last initialization step 3
corresponds to a warm-up before the real optimization step 4. This way,
thrice the encoder, the mixture and the critics are reasonably well initialized
and the real core step 4 can begin where all three are not free but just nicely
initialized, relaxed and further optimized.

4. Core clustering With the same objective, we do the core, final and well-
initialized optimization:

θ̂ = arg max
θ

Ex∼p

[

K

∑
k=1

(

τk(x)−πk

)

× Ck(x)

]

(74)

as described in Algorithm 4.

2.3.5 Model Selection for DiWaC

The goal of model section is to check under/over-fitting and ultimately choose
hyper-parameters such as the number of classes or the architecture of neurons
and layers among several trained models with different hyper-parameters. In
this work, our inter-cluster Wasserstein distance measured in Eq. (69) can be
measured on some held-out validation data distributions. As stated earlier, critics
are just a convenient tool to estimate the Wasserstein distances, so there are at
least two ways to estimate the validation objective:

1. Directly (D) “as is”: we simply apply Eq. (69) except for adapted proportions
π measured on these held-out data:

πvalidation ←
1

Nvalidation

Nvalidation

∑
i′=1

τ(xi′) (75)

2. Re-Fitted (R) “with re-optimized critics”: we use the same previously
adapted proportions Eq. (75) and we optimize again the objective Eq. (69)
but only with respect to the critics which corresponds to step 4, Eq. (73).
The goal is to refine the objective which corresponds to a separation power
of the clustering in terms of interpretation.

D I S C R I M I N AT I V E WA S S E R S T E I N C L U S T E R I N G 65

Algorithm 4 Optimization algorithm (step 4)

1: Input: Data
(xi)i=1,...,N

Number of clusters K

2: Initialization:

θE and θM = (ωk, µk, Sk)k=1,...,K , # initialized from steps 1, 2 and 3

3:

π ← ω # both π and ω

are (re)-parametrized thanks to a softmax on free paramaters

4: T ← 0
5: while θ has not converged do

6: T ← T + 1
7: Free all gradients accumulators
8: Sample a mini-batch of size B from the dataset

(xib)b=1,...,B where ib ∼ UN(1, N)

9: Compute

gibk ←
ωk ×N (E(xib); µk, Sk)

∑
K
ℓ=1 ωℓ ×N (E(xib); µ

ℓ
, Sℓ)

10: so that
τibk ←

gibk

∑
K
ℓ=1 gibℓ

11: Perform a gradient ascent step of 1
B ∑

B
b=1 ∑

K
k=1(τibk −

πk)× Ck(xib) to update θ

12: Update proportions à la online k-means [Bottou and Ben-
gio, 1995]

π ← π +
1

T + 1
×

(

(1
B

B

∑
b=1

τib

)

−π

)

13: end while

Traditionally, model selection is accomplished according to the likelihood
(or completed likelihood) related to the Kullback-Leibler divergence (see the

D I S C R I M I N AT I V E WA S S E R S T E I N C L U S T E R I N G 66

Bayesian Information Criterion BIC [Schwarz et al., 1978] or Information Com-
pleted Likelihood ICL [Biernacki et al., 2000] for examples of extrapolated gener-

alization power measurements). One of the originality of our approach is that our
model selection technique is done according to an other divergence which is
the Wasserstein distance. This parallel allows us to use the historical likelihood-
based literature by replacing the well-known Kullback-Leibler divergence by the
Wasserstein distance to maybe open new avenues of research for future investi-
gations (e. g. adapting BIC and/or ICL beyond likelihood and Kullback-Leibler
divergence).

In practice here, we train M times our model with different set of hyper-
parameters (different number of clusters, different neural networks structure,
different mixture components structure etc.) Models (θ̂m)m=1,...,M are now evalu-
ated on held-out validation data this time instead of training data (in which they
are trained as usual). Finally, we select the best set of parameters: the model in-
dexed by m for which the objective (defined in Eq. (69) with adapted proportions)
is maximum.

2.3.6 Changing the Metric beyond the Euclidean Distance for DiWaC

In terms of ill-posed problem, the axioms of Kleinberg [2015] are almost satisfied:
scale-invariance is valid, cluster-shapes-invariance is almost valid up to the
expression power of the encoder and critic functions (a. k. a. the capacity of these
neural networks in practice) that can be improved thanks to model selection
and only metric-invariance remains but we have the intuition that it can be
improved in future works thanks to the notion of worst metric among a large
class of metrics as briefly evoked in the next chapter. Indeed, at the beginning
of that clustering chapter, we mentioned that our clustering algorithm could not
achieve consistency (i. e. metric invariance) because optimal transport required
an initial and definitive commitment for the unique distance choice in the data
space to build a Wasserstein distance for distributions over the data space. In
fact, we could apply some ideas of the next contribution of this thesis to handle
a very large class of distances at once which is possibly better than only one
euclidean distance. Of course, according to the previously cited clustering no-
free lunch theorem [Kleinberg, 2015]5, we will never be able to cover all possible

distances. Nevertheless, we could contemplate a solution where our hereby
euclidean distance clustering is an initialization for a newer and better clustering
technique for a large class of distances simulataneously in the future towards
more consistency with the work of Kleinberg [2015] in mind.

5 The “clustering no-free lunch theorem” is not an official nickname but we
choose it because it helps understanding the work of Kleinberg [2015]. The
original authors would rather use the clustering “impossibility theorem”.

E X P E R I M E N T S 67

2.4 E X P E R I M E N T S

2.4.1 Implementation details and experimental setup

We did our experiments in Python by using the pyTorch [Paszke et al., 2017] and
scikit-learn [Pedregosa et al., 2011] libraries. with the same learning rate of
10−5 with the Adam default optimization strategy [Kingma and Ba, 2014] every-
where. k-Means and GMM are not easily compatible with large scale datasets
which is why we took only a reasonable subset of large datasets for these ini-
tializations (which is why this is not crucial). In fact, the online learning of
k-Means [Bottou and Bengio, 1995] is also possible for EM thanks to Cappé and
Moulines [2009] but we found our results already satisfying. In our prelimi-
nary experiments, the “AE + GMM” baseline (just the first 2 steps of our algo-
rithm) performed poorly (and with bad reliability not reproducibility) without
k-Means++ [Arthur and Vassilvitskii, 2006] and Xavier neural networks weights
initialization [Glorot and Bengio, 2010]. Thus, all the experiments we report in
this work use them.

For optimization reasons (unconstrained or implicitly constrained optimization
is more stable than explicitly constrained optimization especially for stochastic
gradient descent), we use two tricks:

• the SoftMax trick proportions are paremetrized by free logits that are
converted into proportions through a SoftMax function6;

• the Cholesky trick each covariance matrix is parametrized by its square root

which always exists in the Cholesky decomposition sense for any covariance
matrix (because it must be symmetric definite and positive, see [Press et al.,
2007]) and is a lower-triangular matrix whose diagonal coefficients are
strictly positive (which can be ensured thanks to the use of the exponential
function) to guarantee that when multiplied by its transposed version we
get the correct covariance properties throughout the optimization path.

Unfortunately, we empirically realized that this kind of parametrization is
not enough because of the eigenvalues behavior of that square root matrix:
they numerically explode or implode resulting in ill-conditioned corre-
sponding covariance matrices and create instability. More precisely, it
appeared that when the means are far from the optimal means, the sys-
tem chooses to modify its covariance matrices first instead of the means
which should be prevented because of the spurious maxima. Limiting
the eigenvalues range is better than an unbounded exponential function.
We use a distorted Sigmoid7 function bounded by two constants initially

6 SoftMax(v)k =
exp(vk)

∑
K
k′=1 exp(vk′)

7 Sigmoid(t) = 1
1+exp(−t)

E X P E R I M E N T S 68

parametrized by the variable-wise standard deviations σj of all initial codes
variables E0(xi)j:

(∀t ∈ R) λ + (Λ− λ)× Sigmoid(t) ∈]λ, Λ[(76)

where:

λ = 0.3× min
j∈{1,...,d}

σj and Λ = 3× max
j∈{1,...,d}

σj (77)

to be read with mj =
1
N ∑

N
i=1 E

0(xi)
j and σj =

√

1
N ∑

N
i=1(E

0(xi)j −mj)2.

In supervised classification, for a known labeled dataset (but hidden to the
trained system), the confusion matrix (a. k. a. matching matrix, contingency
matrix or table of confusion) is counting for every pair (actual class k, predicted
class ℓ) the number of occurences of points falling into that pair configuration
(being in group k and category ℓ). Thus, that table can be an interpretation and
visualization tool after a supervised classification or an unsupervised clustering
(with ground truth) on data.

From the confusion matrix M between a given clustering (indexed by the rows
k) and a revealed ground truth (indexed by the columns ℓ), several accuracy
measures can be built afterwards:

H U N G A R I A N A C C U R A C Y (A C C) Thanks to the Hungarian Method [Kuhn,
1955, Stephens, 2000] run on the confusion matrix (while taking care of the
sign thanks to a minus sign and adding the maximum entry because the
Hungarian Method minimizes a sum and we want to maximize that a sum
of occurences), we can measure how good is a clustering

ACC = max
σ

K

∑
k=1

Mk,σ(k) ⇐⇒ min
σ

K

∑
k=1

Ck,σ(k) (78)

where the cost matrix C is adapted with these entries Ck,ℓ = (maxk′,ℓ′ Mk′,ℓ′)−
Mk,ℓ and an optimal K-permutation σ tells which cluster σ(k) should cluster
k be assigned to.

N O R M A L I Z E D M U T U A L I N F O R M AT I O N (N M I) Measuring an estimator of
dependence normalized by the entropy information contained in both
signals is also a classic tool for clustering evaluation but this time evaluated
on the divided confusion matrix M̃ = M

∑k,ℓ Mk,ℓ

NMI =
MI
H

(79)

where

MI = ∑
k,ℓ

M̃k,ℓ log
(

M̃k,ℓ

M̃k,• × M̃•,ℓ

)

(80)

E X P E R I M E N T S 69

and

H = −∑
k,ℓ

M̃k,ℓ log
(

M̃k,ℓ
)

(81)

and M̃k,• = ∑ℓ M̃k,ℓ and M̃•,ℓ = ∑k M̃k,ℓ

N O R M A L I Z E D C O N D I T I O N A L E N T R O P Y (N C E) In the case where we need
to over-cluster (a. k. a. over-segment the dataset) which is predicting more
groups than ground truth semantic ones, it is interesting to see if the several
small predicted clusters fit the fewer and bigger semantic human ones. In
this case, normalized conditional entropy NCE seems appropriate:

NCE =
CE
H

(82)

where the conditional entropy CE is:

CE = ∑
k,ℓ

M̃k,ℓ log
(

M̃k,ℓ

M̃k,•

)

(83)

which makes NCE a kind of an asymetric version of NMI.

2.4.2 Introductory Examples for Generative Wasserstein Clustering

The probabilistic perspective tackled by Wasserstein-GAN in Arjovsky et al.
[2017] approach can inspire one to think of the Kullback-Leibler alternative with
the famous Expectation-Maximization algorithm for Gaussian mixture models
(EM-GMM) [Dempster et al., 1977]. Let’s try to solve the same problem as EM-
GMM by using the Wasserstein distance with Wasserstein-GAN instead of the
Kullback-Leibler divergence (or likelihood up to a sign and a constant term) with
EM: take two Gaussian mixtures A and B both of K = 3 components each in a
D-dimensional space (D = 2) defined by:

• K proportions (πA
k)k=1,...,K that are positive and sum to one for A and K

proportions (πB
k)k=1,...,K with same properties;

• K means (µA
k)k=1,...,K for A and K means (µB

k)k=1,...,K for B where the means
live in the same 2D space R

D;

• K full covariance matrices (ΣA
k)k=1,...,K that are symmetric definite positive

in R
D×D for A and K full covariances (ΣB

k)k=1,...,K with same properties for
B.

Now for good convergence at step 4, we decompose the successive mini-
mizations and maximizations by just focusing on the maximization steps of
Wasserstein-GANs in a warm-up phase. Indeed, in section 2.3.4, after steps 1, 2

E X P E R I M E N T S 70

and 3, we believe that the decoder and the mixture are well-initialized but the
critic neural network is not. It means that our Wasserstein distance estimator
(provided by the critic neural network) is not good and neither its gradient with
respect to the decoder and the mixture. Concretely, this means that even though
the generator (i.e. mixture and decoder) is well initialized, the first iterations will
decrease the initial generation quality because of a poorly initialized critic that
computes our Wasserstein distance value and gradients.

To cope with this bad critic initialization problem at step 4, we choose to
optimize the critic alone which is estimating the Wasserstein distance between
2 fixed distributions (real and generated data do not change but the critic does)
at the beginning of that step 4. This warm-up step concludes a nice initialization
for every parameter as you can see in the toy example represented in Fig. 13 and
the step 4 finally converges into Fig. 14. Of course, this warm-up step initially
developed without generator neural network is also used in our case of WAMiC
with the mixture and the decoder as the two components of the generator: first,
we do not change the generator and we only change the critic neural network
until convergence and then we trigger a second step after this warm-up and the
actual min-max Wasserstein GAN optimization scheme takes place.

To illustrate our approach further, we now work on a toy dataset that we call
“Three Moons” with 1000 points for each of the 3 groups in 2 dimensions as
presented in Fig. 16. With a code space of dimension 1, even though the clusters
are not linearly separable in the original data space, our system is able to cluster
them in 3 groups with 100% of accuracy.

For that simple toy dataset, most of the clustering work is done by the vanilla
auto-encoder. Indeed, once the auto-encoder is trained, we observed that the 1D
codes are already separated according to the cluster labels. Here, we just wanted
to see if model selection was plausible in a simple scenario.

For the number of clusters, without labels in our unsupervised context, while a
classification-score-based cross-validation is not an option, one can still measure
an estimate of the Wasserstein distance (our loss) in step 3 of section 3.3 but on a
validation set. The intuition behind is that if we did not overfit, our loss function
will still be satisfactory on that validation set (that was not seen during training).
After running our first 3 steps algorithm out of 4, we can train a new neural
network f to measure the Wasserstein distance between a held-out validation
dataset and some generated data empirical distributions. More precisely, we find
the results presented in Fig. 15 actually selecting 3 clusters which is satisfactory.

2.4.3 Introductory Examples for Discriminative Wasserstein Clustering

To investigate model selection capabilities of our method and for explanatory
reasons, we use here 2 synthetic datasets:

T H R E E M O O N S 3 M To illustrate our approach further, we now work on a toy
dataset that we call “Three Moons” with 1000 points for each of the 3

E X P E R I M E N T S 71

Figure 13: Same problem as EM-GMM but with a Wasserstein GAN
without a generator neural network but a Gaussian mixture
generator instead. A is the red distribution and B the blue
one and they get purple when in local superposition — best
seen in colors

groups (with a total of N = 3000 points) in dimensions D = 2 as presented
in Fig. 16;

VA R I O U S 2 D D I S T R I B U T I O N S V D Various distributions namely: 2 moons, 1
Gaussian, 1 non-isotropic Gaussian and 1 Student with different proportions

E X P E R I M E N T S 72

Figure 14: Converged mixtures (purple because of the superposition
of the red and blue mixtures) — best seen in colors

Figure 15: Wasserstein model selection on the three moons dataset for
the number of clusters on a validation dataset on 30 runs for
each number of clusters (the lower the better)

Figure 16: Three Moons 3M

E X P E R I M E N T S 73

Figure 17: Various 2D Distributions VD

(1000, 1500, 2000, 2500 and 3000 cardinalities respectively and a total of
N = 10000 points) in dimension D = 2 in Fig. 17.

First, as described in section 2.3.4, we trained an auto-encoder on the 3M
dataset with a code space dimension of d = 1: even though the clusters are not
linearly separable in the original data space, our system is able to cluster them in
3 groups with 100% of accuracy (an EM-GMM or a simpler k-Means run in the
codes data is enough!). For that simple toy dataset, most of the clustering work is
done by the vanilla auto-encoder. Indeed, once the auto-encoder is trained, we
observed that the 1D codes are already perfectly separated along one axis with
respect to the cluster labels. Here, the point is not to check clustering capabilities
but to see if model selection is plausible in this simple scenario.

Now we study the case where that number of clusters K is not known in
order to check if model selection is possible in these relatively easy settings. The
intuition behind our validation procedure for model selection is that if a given
hyper-parameter configuration (the number of clusters in this experiment) does
not lead to under/over-fitting, our objective function will still be satisfactory
on a validation set (i. e. that was not seen during training) compared to other
configurations with one held-out validation set.

In the little more challenging (but still synthetic) VD dataset in Fig. 17, we
observe that dealing with various kinds of distributions (even unknown by the
system and beyond the Gaussian case) is still compatible with our mixture-type
model-based clustering algorithm.

E X P E R I M E N T S 74

Datasets MNIST Reuters Reuters-10k HHAR

DiWaC (ours) 98.42 84.24 84.87 92.42

GeWaC (ours with fixed proportions from AE+GMM) 97.37 82.14 82.27 87.54

ClusterGAN [Mukherjee et al., 2019] 90.97 – – –

VaDE [Jiang et al., 2016] 94.06 79.38 79.83 84.46

DEC [Xie et al., 2015] 84.30 75.63 72.17 79.82

AE + GMM (full covariance) 82.56 70.98 70.12 78.48

IMSAT [Hu et al., 2017] 98.40 – 71.00 –

GAR [Kilinc and Uysal, 2018] 98.32 – – –

DEPICT [Dizaji et al., 2017] 96.50 – – –

GMM (diagonal covariance) 53.73 55.81 54.72 60.34

k-Means 53.47 53.29 54.04 59.98

Table 2: Experimental accuracy results (%, the higher, the better) based
on the Hungarian method. (the last rows correspond to meth-
ods without neural networks)

2.4.4 Real Data Experiments

For the real-world experiments, we were interested in 4 datasets with 3 different
in nature (images, sparse and dense data) but all with several hundreds of
dimensions per item:

• MNIST: 70 000 handwritten digits images dataset living in dimension 784
(for 28× 28 pixels);

• Reuters: English news stories labeled with a category tree Lewis et al. [2004].
Following DEC Xie et al. [2015], we used 4 root categories: corporate/indus-
trial, government/social, markets, and economics as labels and discarded
all documents with multiple labels. We computed tf-idf features on the 2000
most frequent words to represent all articles;

• Reuters-10k: a random subset of Reuters with only 10 000 examples (se-
lected with precisely the same random generator seed as DEC);

• HHAR: The Heterogeneity Human Activity Recognition (HHAR) dataset
Stisen et al. [2015] contains 10,299 sensor records from smart phones and
smart watches. All samples are partitioned into 6 categories of human
activities and each sample is of 561 dimensions.

On MNIST, in Fig. (18), we generated data from our GeWaC further and further
in random directions from the centroids: we see that the digits get fancier away
from the centroids. The good quality of the generation is comparable to those of
regular GANs but in a cluster-wise fashion.

In these experiments, we used the same encoder (with symmetric decoder)
MLP8 structure from Xie et al. [2015] D-500-500-2000-d (D is the dimensionality
of the input space e. g. D = 784 for MNIST and d = 10 is the dimensionality of

8 MLP stands for Multi-Layer Perceptron

E X P E R I M E N T S 75

mk

mk + 0.5Sku

mk + Sku

mk + 1.5Sku

mk + 2Sku

mk + 2.5Sku

mk + 3Sku

mk + 3.5Sku

Figure 18: Generated digits images. From left to right, we have the ten
classes found by GeWaC and ordered thanks to the Hungar-
ian algorithm. From top to bottom, we go further and further
in random directions from the centroids (the first row being
the decoded centroids). More specifically, u is sampled from
the uniform random density on the unit hypersphere in the
code space.

the code space) (and ReLU activations) for fair comparisons with others. In fact,
our conditions are tougher than the ones of IMSAT, GAR and DEPICT that use
more sophisticated convolutions than matrix-vector products while DEC, VaDE
and our DiWaC do not which is very encouraging.

The overall results of our DiWaC approach compare favorably to the deep
clustering state-of-the-art in Table. 2. First, we observe that there is an improve-
ment over standard baseline algorithms (“AE + GMM” compared to GMM and
even k-Means) when fed with the output of an AE which is coherent with the
results of Xie et al. [2015]. We must admit how surprised we are that this “AE +
GMM” baseline works so well on various datasets. Undiscovered mathematical
theories could tackle this phenomenon: Why would a simple auto-encoder consis-

tently map data in separated Gaussian groups?. Maybe the auto-encoders layers
loosely behave like successive cluster-wise deterministic random projections [Bing-
ham and Mannila, 2001] and non-linear functions: indeed, the linear layers matrix

F U T U R E W O R K A N D C O N C L U S I O N 76

entries have Gaussian frequencies but this would require further investigations
to get thorough scientific interpretations. On a more practical level, we are partic-
ularly interested in real-world industrial cases where we highly recommend this
“AE + GMM” baseline for its ease of implementation and good results in practice
and also for fast prototyping.

There is a supplementary and significant improvement for DiWaC over its
“AE + GMM” initialization. These good results are even comparable to those
of supervised non-convolutional networks with just a few layers of the 1990s9.
On MNIST, the important performance gap between VaDE and DiWaC can be
explained by difficulties (already studied in [Jiang et al., 2016]) with data that lie
extremely close to low-dimensional manifolds, like images. In that regard, our
algorithm inherits the strenghts of WGAN [Arjovsky et al., 2017] and models
data much more faithfully without our DiWaC algorithm being adversarial which
means that Optimal Transport alone is a powerful tool as the non-adversarial
work of Genevay et al. [2017] also tends to proove. Furthermore, as presented
previously (section 2.3.5), our strategy has a natural criterion for model selec-
tion whereas VaDE has no principled model selection criterion; in theory, the
validation likelihood could be used, however, computing the likelihood of for
variational techniques remains an open question (see e.g. [Cremer et al., 2018]).
In other works, DEC’s authors propose to use the ratio between training and
validation loss as a criterion, however this ad hoc solution has little statistical
foundations. Model selection is definetely the main feature of our approach
on top of providing good results at same hyper-parameter configurations. In
fact, better neural networks structure can be found by cross-validation with our
algorithm which could be done in future work.

2.5 F U T U R E W O R K A N D C O N C L U S I O N

This work presents twos ways to use the Wasserstein distances literature with
neural networks in order to achieve efficient clustering at the crossroad of Optimal
Transport, Neural Networks and Model-based mixture techniques: first, we did
generative clustering and second, we did discriminative clustering. In spite of
three careful initialization steps, our technique is still end-to-end trainable as
theoretically the final step could be done alone but in practice, with an associated
higher risk of being stuck in spurious local extrema and much less reproducibility
(i. e. higher dependence on the pseudo-random generators seeds which we do
not have thanks to our robust and reasonable initialization steps).

In a mockingly accurate description of the generative part of our work, we
could say that placing a mixture distribution at the input of new Generative
Adversarial Networks seemed worthwhile for clustering purposes. Indeed, we

9 see http://yann.lecun.com/exdb/mnist for a complete supervised MNIST
benchmark although they train with supervised labels whereas we do not
have this supervised information.

http://yann.lecun.com/exdb/mnist

F U T U R E W O R K A N D C O N C L U S I O N 77

inherit the recent wealth of literature (see adversarial autoencoders by Makhzani
et al. [2015], Wasserstein autoencoders by Tolstikhin et al. [2018] and even adver-
sarially learned inference Dumoulin et al. [2017]) with tunable input mixtures
each mode corresponding to a cluster. In fact, it turns out that generating data in a
clustered fashion with the desire to minimize the estimated Wasserstein distance
with real data is difficult because of a mono-component collapsing effect due to a
LASSO-kind of constraint on the mixture proportions which favors degenerated
(sparse) proportions. Another way to explain this failure is the richness of the
neural networks expression power that makes the Gaussian mixture clustering
useless: one Gaussian prior is enough to generate whole datasets which looses
any clustering capabilities hope if done carelessly. Eventually, we acknowledge
the better and elegant solutions given in the recent work of Mukherjee et al.
[2019] to cope with these problems and nothing can prevent us from re-using the
same techniques with Wasserstein distance for us in lieu of the Jensen-Shannon
divergence they use.

For the discriminative part, we observe that although our DiWaC system sees

the data one by one because of its linear computation and memory complexity,
it handles complex relationships between the points. In a way that is similar to
spectral clustering (SC) with pairwise similarities in particular, but our approach
has improved results with an objective function that does not full storage of
pairwise similarities but only optimal transport that encodes it implicitly into the
systems with still pairwises similarities but at a cluster distributions level. Our
algorithm detects the space zones where the density mass is occupied thanks to
the probabilistic model inherent to the optimal transport theory associated to our
optimization. For that matter, we did manage to handle the trade-off between
the flexibility of the neural networks functions and the rigidity of the mixture
models choice of distributions. A counter-example would consist in a dataset
with non-separable classes: the system would not know precisely when to activate

the low-density threshold in order to optimally put a class frontier.
Although our work is far from the well-established theory of the Reproducing

Kernel Hilbert Spaces (RKHS), we realize that a similar phenomenon occurs
when it comes to satisfactory results: from an input space of a given reasonable
dimensionality D, it is better to first increase that dimensionality by changing
space thanks to a mapping (the first layers of our encoder are increasing dimen-
sionality compared to D) and only after that, shrink it to a small dimensionality
d ≪ D (the last layer of our encoder). The main difference between our work
and the RKHS theory is that our transformations are learned from the data and
not given analytically a priori (e.g. by a Gaussian kernel) which echoes the work
of Unser [2018].

Within the context of the algorithm laid out above, we empirically observe
some symbiosis operating between generative or discriminative clustering and
non-linear embedding. A great advantage of our approach is model selection
especially for the number of clusters that seems to empirically work well. In other

F U T U R E W O R K A N D C O N C L U S I O N 78

tasks different from clustering for itself, encouraged by future over-clustering
investigations, one can be inspired by the work of Liao et al. [2016], that demon-
strates the benefits of clustering-based regularization for supervised classification
and generalization. For example, inside a supervised classification problem, iden-
tifying sub-categories might help to specialize classifiers on more homogeneous
classes for improved generalization capabilities and ease of data interpretations.
Finally, we now have the intriguing possibility of following other successes of the
supervised classification and unsupervised clustering communities, such as the
automatic selection of discriminative parts in the spirit of what Sun and Ponce
[2016] and eventually Doersch et al. [2012] did and the automatic setting of the
number of clusters. Beyond all these promising clustering results, our GeWaC
algorithm has the ability to generate cluster-wise data. It is interesting to see that
such conditional generation, already explored in the supervised setting [Mirza
and Osindero, 2014] is not fundamentally harder without supervision.

3
U N S U P E RV I S E D F E AT U R E I M P O RTA N C E

What Makes Paris Look like Paris?

probably Alexei A. Efros in

SIGGRAPH, 2012

A B S T R A C T

Machine learning and pattern recognition requires data analysis: a process of
inspecting, cleansing, transforming and modeling data with the goal of discover-
ing useful information, informing conclusion and supporting decision-making.
Unsupervised learning as a scientific field provide tools for dimensionality re-
duction, visuzalization procedures, features extraction etc. in order to empower
human beings with enough computational power to grasp the environment we
live in.

This chapter is more of plea for further investigations towards unsupervised
feature importance rather than a scientific contribution. Indeed, we revisit notions
such as differenciation for distributions, distribution Wasserstein-based metrics
and manifold normal in order to call for both further theoretical and practical
research work.

K E Y W O R D S

Feature importance, relevant features, manifold, foreground/background seg-
mentation, cosegmentation, hypersurface normal

79

I N T R O D U C T I O N 80

3.1 I N T R O D U C T I O N

This chapter aims at exploring possible statistical and algorithmical tools for
unsupervised feature importance extraction. Indeed, the problem of extracting
the absolute or relative importance of data coordinates is of high interest for
understanding data. In supervised learning, revisiting the principle of Occam’s
razor gave birth to a considerable literature and we suggest at least one thesis to
the reader: Structured Sparsity-Inducing Norms: Statistical and Algorithmic Properties

with Applications to Neuroimaging, the Ph.D. manuscript of Jenatton [2011] which
combines coordinate selection, weighting and structure in high-dimensional
problems such as neuro-imaging. At the same time, the decision trees literature
also carefuly studied the problem in several works by Breiman [2001, 2017] and
more recently, there is a will to break the black box taboo of neural networks being
supposedly non-interpretable with interesting attempts by Knight [2007] and
de Sá [2019]. The emerging popularity of add-on toolboxes such as Captum
[Kokhlikyan et al., 2019] is a solid proof showing a research trend towards input
space interpretability in supervised settings at least.

Back in unsupervised learning, the problem of selecting or weighting coordi-
nates by relevance is probably an ill-posed problem because there is no supervi-
sion. As usual in pattern recognition, we assume that data live in an instrisically
low-dimensional manifold compared to the whole data space dimensionality.
If we are able to find a machine learning procedure able to compute an hyper-
surface normal of that manifold at each point of it, then we can interpret that
normal direction coordinates as relevant or not for describing the manifold. More
precisely, we can ask ourselves Is it possible to maximally change a manifold of data

with an infinitesimally small distortion? and the distortion would be a function of
space giving high amplitudes to coordinates that one should not change in order
to preserve the manifold consistency. This question is reminiscent to the notion of
gradient and we make the hypothesis that perturbating data in an infinitesimally
small fashion can be done with gradient of a Wasserstein distance between the
real data distribution and a pertubated version of it.

One possible application of this work could be unsupervised foreground /
background segmentation. Indeed, from a dataset of images containing the same
high-level semantic category of content (e. g. “wolves”) in several outdoor /
indoor conditions, the revealed coordinates would select foreground pixels from
background non-content-manifold-specific pixels (that can intuitively be changed
without breaking the semantic meaning of the image category). Generalizing
such an automatic tool would be of great interest in many scientific fields beyond
computer vision.

I N WA M A D I : I N FI N I T E S I M A L WA S S E R S T E I N M A X I M A L D I S T O RT I O N 81

3.2 I N WA M A D I : I N FI N I T E S I M A L WA S S E R S T E I N M A X I M A L D I S T O RT I O N

In the previous chapter 2, we reviewed some consequences of the impossibility
theorem by Kleinberg [2015]. In particular, the metric invariance is an interesting
and difficult subject. Indeed, it seems that choosing a particular metric is a heavy
commitment. This is especially true in unsupervised learning probably because
determining a metric is choosing the algorithms lenses for seeing the data without
supervision which is redefining a notion of neighborhood tainted by the curse of
dimensionality we mentioned earlier in introduction section 1.5.2.

For a random variable x coming from distribution p living in a space X (say
R

D), we can consider the distortion function D = t×F mapping X to X (and
t ∈ R

+) which creates a second random variable y defined by:

y = x +D(x) = x + t×F (x) (84)

which defines a new distribution qt,F . For the sake of simplicity, we impose:

(∀x ∈ R
D) ‖F (x)‖2 = 1 (85)

so that the length of the distortion is simply t. Our goal is to measure how
different a perturbated distribution qt,F can be from the original distribution p

with an infinitesimal length t and constrained energy ‖F (x)‖2 = 1. Thanks to an
already successful probabilistic approach in Machine Learning [Murphy, 2012],
we rephrase our question set out in our introduction: What is the infinitesimal

steepest distortion of data? Indeed, this kind of approach would give a function F
such that when applied to each data point xi ∈ R

D, the computed vector F (xi) ∈

R
D would tell which coordinate (x

(j)
i)j=1,...,D is relevant i. e. characteristic in an

interpretable way for deeper data analysis especially when the dimensionality D

is high.
There is a natural mathematical and geometric tool to measure a distortion for

distributions: the Wasserstein distance when the associated data space metric is d.
Thus, inspired by the optimization idea of steepest gradient direction, we can first
define such a function measuring a quantity corresponding to the discrepancy
L(t,F , d) induced by the distortion D = t×F , namely the Wasserstein distance
(based on metric d) between the distributions p and qt,F :

L(t,F , d) = min
γ∈Γ(p,qt,F)

E(x,y)∼γ [d(x, y)] (86)

and because

y ∼ qt,F ⇐⇒ y = x′ + t×F (x′) and x′ ∼ p (87)

we get (without applying a change of variable formula involving a Jacobian term):

L(t,F , d) = min
γ′∈Γ(p,p)

E(x,x′)∼γ′
[

d(x, x′ + t×F (x′))
]

(88)

I N WA M A D I : I N FI N I T E S I M A L WA S S E R S T E I N M A X I M A L D I S T O RT I O N 82

with Γ(p, q) being the set of coupled distributions with marginals p and q. Please
note that without the min operator, this change of variable would not have been
valid: between Eq. (86) and Eq. (88), the optimal transport changed from γ to γ′

because they are different since Eq. (87).
Now we revisit the notion of steepest function Wasserstein direction gives an

optimization problem:

F ∗d = arg max
F
|∇tL(0,F , d)| (89)

where for a given direction F and metric d, the quantity ∇tL(0,F , d) is the
derivative of function t 7→ L(t,F , d) on t = 0+ which is:

∇tL(0,F , d) = lim
t→0+

L(t,F , d)−L(0,F , d)

t− 0
(90)

which simplifies in:

∇tL(0,F , d) = lim
t→0

L(t,F , d)

t
(91)

because p = q0,F for all direction F and so, we get:

F ∗d = arg max
F

lim
t→0+

L(t,F , d)

t
(92)

At this point, we ignored the distance d operating in the data space X = R
D but

we can build such a distance in a form that parses a large variety of metrics:

dφ : R
D ×R

D → R+ (93)

(x, y) 7→ ‖φ(y)− φ(x)‖2

and we note that dφ(x, y) = (L2 ◦ φ)(x, y) = L2(φ(x), φ(y)) (L2 being the eu-
clidean distance).

We make sure that φ is a smooth bijection so that we inherit injectivity (and dif-
ferentiability for optimization reasons we will see later). Indeed, such a bijective
φ allows the associated function dφ to verify the distinguishability property of a
distance, namely:

(∀(x, y) ∈ R
D ×R

D) x = y ⇐⇒ φ(x) = φ(y) (94)

⇐⇒ 0 = L2(φ(x), φ(y)) = dφ(x, y) (95)

and the other required properties for being a distance: positivity, symmetry and
triangular inequality are given for free thanks to the euclidean distance.

Moreover, we also want to avoid some equivalence class explosion effect due to
the fact that there is no practical difference of interpretation between choosing
a given metric d and a proportional one α× d (with α > 0) especially for explo-
sively large coefficient α. Avoiding such annoying properties can be obtained

I N WA M A D I : I N FI N I T E S I M A L WA S S E R S T E I N M A X I M A L D I S T O RT I O N 83

by constraining the variations of the function φs indexing the distances space
made of dφs. Mathematically, the notion of variation for a multivariate bijective
function φ is studied thanks to the derivative matrix ∇φ(x) ∈ R

D×D called the
Jacobi matrix at each point x ∈ R

D and the main variation directions are given
by its eigen values (λ(x)(j))j=1,...,D. Thus we can propose two ways to constrain
these variations:

B O U N D I N G A M P L I T U D E (B A) We limit the Jacobi eigenvalues amplitude:

(∀x ∈ R
D)(∀j ∈ J1, DK) λ(x)(j) ∈ [Jmin, Jmax] ⊂ R

∗
+ (96)

Z E R O I N G G L O B A L L O G - A M P L I T U D E (Z G L A) We enforce a null logarithm
of Jacobi determinant mean:

0 = κ = Ex̃∼U (p,qt,F)
log |det∇φ(x̃)| = Ex̃∼U (p,qt,F)

[

D

∑
j=1

log λ(x̃)(j)

]

(97)

where:

x̃ ∼ U (p, qt,F) means x̃ = u× x + (1− u)× y (98)

with u ∼ UR(0, 1)

and x ∼ p

and y = x′ + t×F (x′) with x′ ∼ p

Indeed, we need that “zero overall Jacobian property” being true but only
over the convex enveloppe of the original and distorted points and not
necessarily on the whole space R

D (manily because we will not evaluate
the functions at hand anywhere else outside that enveloppe). This convex

enveloppe sampling technique has been used for maintaining a Lipschitzian
constraint by Gulrajani et al. [2017].

These two combined constraints over the set of smooth bijections defines the
functions set Φ. For more mathematical details, we highly recommend the reader
the thorough academic book by Ambrosio et al. [2008] to conduct further and
more principled studies.

3.2.1 A Simplified Case: Empirical Distributions

Before doing some mathematical proposals, we study in this section a simpli-
fied case where only empirical distributions are at stake. For that simplified
scenario with euclidean distance, we handle p̃ = 1

B ∑
B
b=1 δxib

an empirical dis-

tribution from p, we also have q̃t,F = 1
B ∑

B
b=1 δxib

+t×F (xib
) from qt,F . For all

I N WA M A D I : I N FI N I T E S I M A L WA S S E R S T E I N M A X I M A L D I S T O RT I O N 84

t ∈
[

0, 1
2 mini,i′ ‖xi′ − xi‖2

]

the optimal transport between p̃ and q̃t,F is the natu-
ral one as the Fig. 19 shows (we will proove the general case later):

WL2(p̃, q̃t,F) = min
γ∈Γ(p̃,q̃t,F)

E(x,y)∼γ‖y− x‖2 (99)

= min
γ′∈Γ(p̃,p̃)

E(x,x′)∼γ′‖x
′ + t×F (x′)− x‖2

but with empirical distributions, the transport γ′ is in fact an assignment π of
integers ib parsing the points in the p̃ = 1

B ∑
B
b=1 δxib

sum to the integers ib′ parsing

the points in the q̃t,F = 1
B ∑

B
b′=1 δxi

b′
+t×F (xi

b′
) with π(i) = i′:

WL2(p̃, q̃t,F) = min
π

1
B

B

∑
b=1
‖xπ(ib)

+ t×F (xπ(ib)
)− xib‖2 (100)

=
1
B

B

∑
b=1
‖xib + t×F (xib)− xib‖2 = t

so that limt→0+
WL2 (p̃,q̃t,F)

t = 1 for all directions F .

Figure 19: Optimal and Natural Transports are the same in Euclidean
Distance Case for close Disttributions

Unfortunately, this is not useful because it means that all F directions are
equally distorting the original distribution with respect to the euclidean Wasser-
stein distance in a quantity that does not even depend on the distribution p̃.

Based on that failed study, we decide to also optimize the distance dφ to get
non trivial F directions of distortion because we just saw that the euclidean
distance is independent from the manifold at hand and thus too much isotropic in
a data-independent fashion. Optimizing the distance, gives a new optimization
problem:

max
F ,φ

(

lim
t→0+

Wdφ
(p, qt,F)

t

)

(101)

I N WA M A D I : I N FI N I T E S I M A L WA S S E R S T E I N M A X I M A L D I S T O RT I O N 85

instead of maxF
(

limt→0
WL2 (p,qt,F)

t

)

= 1 that previously left us with no optimiza-
tion hope. This Eq. (101) is much more powerful because we do not only get
the steepest distortion but also the pair of steepest distortion direction F and
optimized associated metric dφ.

Now that we have a better grasp on what is mathematically going on, we tackle
the general (smooth) distributions case.

3.2.2 General Distribution Case

The ideas we just briefly tackled are appealing and now we give a rather theoreti-
cal result in order to pursue the optimization side in a general case beyond the
euclidean distance.

Proposition. For an infinitesimally small distortion D = t × F , the optimal
transport between the original distribution p and distorted distribution qt,F is
the natural transport for all smooth metric dφ indexed by bijection φ:

(∃M ∈ R
∗
+)(∀t ∈ R

∗
+) t < M =⇒ Wdφ

(p, qt,F) = min
γ∈Γ(p,qt,F)

E(x,y)∼γ

[

dφ(x, y)
]

= Ex∼p

[

dφ(x, x + t×F (x))
]

Proof. For all pair (x, y) of points drawn from any transport γ ∈ Γ(p, qt,F), there
exists a point x′ such that y = x′ + t × F (x′) because this is how qt,F is built.
Applying a Taylor expansion on the function fx,x′ defined by:

fx,x′(t) = dφ(x, x′ + t×F (x′)) (102)

gives:

dφ(x, y) = dφ(x, x′ + t×F (x′)) (103)

= fx,x′(t)

= fx,x′(0) + t×∇t fx,x′(0) + o(t)

= dφ(x, x′) + t×∇t fx,x′(0) + o(t)

(104)

Let’s focus on the second term ∇t fx,x′(0), we know thanks to a Taylor expansion
on φ around x′ that:

fx,x′(t) = ‖φ(x′ + t×F (x′))− φ(x)‖2 (105)

= ‖φ(x′)− φ(x) + t×∇φ(x′)×F (x′) + o(t)‖2

and thus the only remaining non-negligible term depending on t gives:

∇t fx,x′(0) = ‖∇φ(x′)×F (x′)‖2 (106)

I N WA M A D I : I N FI N I T E S I M A L WA S S E R S T E I N M A X I M A L D I S T O RT I O N 86

and in the end, for Eq. (103), we obtain:

dφ(x, y) = dφ(x, x′) + t× ‖∇φ(x′)×F (x′)‖2 + o(t) (107)

and from that Eq. (107) as for all transport γ ∈ Γ(p, qt,F) there is an associated
coupling γ′ ∈ Γ(p, p) such that each pair (x, y) ∼ γ corresponds to the pair
(x, x′) ∼ γ′ (as seen earlier) we get:

E(x,y)∼γ

[

dφ(x, y)
]

= E(x,x′)∼γ′
[

dφ(x, x′)
]

(108)

+t×Ex′∼p

[

‖∇φ(x′)×F (x′)‖2
]

+t× ǫF ,γ(t)

where limt→0 ǫF ,γ(t) = 0 and one can note that the second term decouples the
(x, x′) pairing. If we consider the natural transport γ∗ (i. e. (x, y) ∼ γ∗ ⇐⇒
(x ∼ p and y = x + t×F (x)), then we can measure the difference D(γ, γ∗) for
any other non-natural transport γ:

D(γ, γ∗) = E(x,y)∼γ

[

dφ(x, y)
]

−E(x,y)∼γ∗
[

dφ(x, y)
]

(109)

= E(x,x′)∼γ′
[

dφ(x, x′)
]

+ t×
(

ǫF ,γ(t)− ǫF ,γ∗(t)
)

thanks to Eq. (108)

which is positive for a t > 0 sufficiently small because limt→0 |ǫF ,γ(t)− ǫF ,γ∗(t)| =
0 which proves that the natural transport γ∗ has the minimal transport cost and
thus is the optimal transport.

When we briefly saw the empirical distribution and euclidean case, it appeared
that when the distortion is sufficiently low in amplitude (i. e. with a small t),
the optimal transport is the natural one (assigning each original point to its
distorted version). With that proposition above in mind and in order to build an
optimization objective and an algorithm, we propose a procedure to get a value
of such a t > 0 satisfying:

max
b
‖φ(xib)− φ(xib + t×F (xib))‖2 ≤

1
2

min
b,b′
‖φ(xib)− φ(xib′

)‖2 (110)

The right term does not depend on t and is easily computed from mini-batches of
data. The left term can be approximated to guess the right order of magnitude for
t that we can divide later until the inequality Eq. (110) is satisfied in a dichotomic
fashion. Indeed:

‖φ(xib)− φ(xib + t×F (xib))‖2 ≃ t× ‖∇φ(xib)×F (xib)‖2 (111)

≤ t× Jmax because ‖F (xib)‖2 = 1

and thus

tk =
minb,b′ ‖φ(xib)− φ(xib′

)‖2

2k+1 × Jmax
(112)

with an increasing k ∈ N
∗ is a good strategy until satisfying Eq. (110).

O P T I M I Z AT I O N 87

3.3 O P T I M I Z AT I O N

In this section, we present a draft of an optimization strategy to summarize the
ideas we just presented with neural networks implementations for functions.
This is about leveraging the research effort for deep learning in general and GANs
in particular for our representation learning and data analysis purposes.

Indeed, we have the function F implemented by a neural network of pararam-
eters θF mapping R

D to R
D. We add some layers: a SoftMax layer followed by

an element-wise square-root layer with kept sign layer such that we maintain the
norm 1 constraint on F .

Thanks to some work accomplished in a different context by Dinh et al. [2017],
the implementation of bijection φ in a special neural network of parameters θφ

is already done and the constraints needed in section 3.2 are easily applicable.
More specifically, we keep on zeroing the overall jacobian mean in a way that is
similar to online k-Means [Bottou and Bengio, 1995] via an intermediate bijection
ψ that we divide by scalar κ for control the variation of φ = exp(−κ

D)× ψ. All
these parameters are concatenated in θ that the algorithm 20 optimizes.

Maintaining the constrains that we required Eq. (96) and Eq. (97) in section
3.2 is facilitated by the structure of our bijective neural network that we took
from Dinh et al. [2017]. Indeed, for bijection ψ implemented by L bijective layers
ψ = LayerL ◦ · · · ◦ Layer

ℓ
◦ · · · ◦ Layer1, we have at each layer ℓ among L:

x[:d] 7→ y[:dℓ] = Layer
ℓ
(x)[:dℓ] = x[:dℓ] (113)

x[dℓ :] 7→ y[dℓ :] = Layer
ℓ
(x)[dℓ :] = x[dℓ :] × exp(sℓ(x[:dℓ])) + tℓ(x[:dℓ])

where the functions sℓs and tℓs are free neural networks (with pythonic notations
for dimensions and without loss of generality in the coordinates order but with
an arbitrary pivot dℓ) and then we can bound the associated Jacobi matrices:

∇Layer
ℓ
(x) =

(

Idℓ 0dℓ×(D−dℓ)

– diag(exp(sℓ(x[:dℓ])))

)

(114)

and log |det∇Layer
ℓ
(x)| =

D−dℓ

∑
j=1

s
(j)
ℓ
(x[:dℓ])

Thanks to the chain rule applied to such a bijection ψ as a composition of layers
from x0 = x to xℓ = Layer

ℓ
(xℓ−1) for ℓ ∈ J1, LK, we can collect through the

forward computations of the function ψ output and sum the outputs of sℓ in
order to get κ:

κ = Ex∼U (p,qt,F) [log |det∇ψ(x)|] = Ex∼U (p,qt,F)

[

L

∑
ℓ=1

D−dℓ

∑
j=1

s
(j)
ℓ
(xℓ−1

[:dℓ]
)

]

(115)

Having an updated estimate of κ allows us to use φ = exp(−κ
D)× ψ instead of

ψ directly such that log |det∇φ(x)| = log |det∇ψ(x)| − κ which as zero mean.

O P T I M I Z AT I O N 88

For numerical stability reasons, we can impose on the neural networks sℓs to
have a final element-wise 3×tanh

∑
L
ℓ=1(D−dℓ)

layer so that κ ∈ [−3, 3] is bounded and thus

for the local stretching amplitude it gives: Jℓmin/max = exp(±3
D−dℓ

).
Recently, some Generative Adversarial Networks articles by Pan et al. [2019]

and Detlefsen et al. [2019] report some evidence that the Kantorovich-Rubinstein
formulation implemented by neural networks in Lipschitz functions [Miyato et al.,
2018] has positive regularization effects on the computation and optimization of
the Wasserstein-based losses. To benefit from these advances, let’s recall what we
wanted:

max
F ,φ

(

lim
t→0+

Wdφ
(p, qt,F)

t

)

(116)

Thanks to that Kantorovich-Rubinstein duality (used for example for Wasserstein
Generative Adversarial Networks first by Arjovsky et al. [2017]), we know that
for sufficiently low value of t (with some approximation):

Wdφ
(p, qt,F) = WL2(pφ, qφ,t,F) = max

C∈Lip1

Ex∼p

[

C
(

φ(x)
)

− C
(

φ(x + t×F (x)
)]

(117)

In fine, we can forget about the limit operator in Eq. (116) for a low value of t

because the optimal transport is the natural transport even in the Kantorovich-
Rubinstein formulation and thus we have:

max
θF ,θφ,θC

L(θF , θφ, θC) (118)

with

L(θF , θφ, θC) =
Ex∼p

[

C
(

φ(x)
)

− C
(

φ(x + t×F (x)
)]

t
(119)

and in a stochastic gradient descent strategy, the only important quantity is a
bias-free estimate of the gradient [Robbins and Monro, 1951]:

∇̂L(θF , θφ, θC) =
∇
[

∑
B
b=1 C

(

φ(xib)
)

− C
(

φ(xib + t×F (xib)
)

]

t× B
(120)

for a small t and some B random indices ib ∼ UN(1, N).
In conclusion of this section, the optimization problem finally gets:

max
θF ,θφ,θC

(

Ex∼p

[

C
(

φ(x)
)

− C
(

φ(x + t×F (x)
)]

t

)

(121)

such that φ is bijective, C is 1-Lipschitz and F Jacobian the BA and ZGLA proper-
ties in Eq. (96) and Eq. (97) for small t given by Eq. (112).

A L G O R I T H M 89

3.4 A L G O R I T H M

A L G O R I T H M 90

Figure 20: Unsupervised Feature Importance Algorithm

P O S S I B L E C O M P U T E R V I S I O N A P P L I C AT I O N S 91

3.5 P O S S I B L E C O M P U T E R V I S I O N A P P L I C AT I O N S

For the specific computer vision scientific field, pixels are made of one or three co-
ordinates (for gray levels or color images respectively), so showing relevant pixels
in images of the same category could lead to an unsupervised foreground/back-
ground segmentation where the only supervision is the fact that all images belong
to the same semantic category. A similar problem was tackled by Joulin et al.
[2010] a few years ago but with a little more supervision: we have access to
several images categories labels and they call the problem cosegmentation. As
they stated:

Purely bottom-up, unsupervised segmentation of a single image
into foreground and background regions remains a challenging task
for computer vision.

This remains true for all kind of data but without different meanings. Fundamen-
tally, if one has a dataset, one could interpret relevance measurements this kind of
algorithms could provide. In computer vision, the core idea of co-segmentation is
that the availability of multiple images that contain instances of the same “object”
classes makes up for the absence of detailed supervisory information. Some
research has been efficiently conducted for interactive foreground / background
segementation [Rother et al., 2004] but here we would want to avoid user interac-
tion and benefit from a whole dataset: a class of data sharing a common pattern
that we want to highlight. The only form of supervision is knowing that data
share some information of interest without knowing what precisely.

3.6 F U T U R E W O R K A N D C O N C L U S I O N

Investigating Wasserstein distances with varying metric seems promising for
future work. This sketch of contribution can be a stepstone answer to metric
invariance pointed out by Kleinberg [2015] for clustering (which is an unsuper-
vised task like feature importance extraction in this work). This shows that this
work can be improved in terms of machine learning and optimization and also
engineering on real world data.

Indeed, computer vision in general and foreground/background unsupervised
segmentation (in the way we present it) in particular are ways to provide a better
understanding between unsupervised metric learning and feature importance
extraction thanks to large cardinality datasets.

4
P R E D I C T I O N W I T H U N C E RTA I N T Y

When in doubt, tell the truth

Mark Twain in More Tramps
Abroad, 1897

I respectfully dedicate this chapter to Joannès Vermorel who tried to teach me software

programming during summer 2005 in a farm at Fontainebleau within the Centre for

Computational Biology headed by Jean-Philippe Vert. Joannès also helped me find a job in

summer 2014 although I did not have the right diploma nor skills. Thank you Joannès!

A B S T R A C T

Uncertainty estimation with neural networks predictions is not yet well stud-
ied (except in the recent and controversial field called Bayesian deep learning).
Moreover, in the academic and business worlds, some misinterpretations persist
about the probabilities as outputs of a supervised classifier: a probability of
belonging to a category or its associated vector across all categories does not
fully express information on uncertainty. Indeed, most practitioners extract the
maximum entry of a probability vector, which is hacky and not sufficient for a
more thorough interpretation of uncertainty. At the same time, in many sensitive
applications where security, health or even justice issues are involved, it seems
that uncertainty estimation is crucial.

The core idea of our Hypothesis of an Uncertainty Model (HUM) contribution
is predicting parameters of an output law instead of predicting an output estimate.
On the one hand, putting a parametrized probabilistic law on the output side
makes our approach Bayesian. On the other hand, using neural networks to
produce these parameters makes it less principled but more pragmatic. By
combining the best of these two worlds in a small number of additional lines of
code is convenient in practice to estimate uncertainty for automatic or assisted
decisions in supervised learning in an engineeringly feasible but yet theoretically
principled fashion.

K E Y W O R D S

Bayesian deep learning, Bayesian neural networks, Uncertainty, Confidence,
Reparametrization Trick, Neural Networks, Distributions

92

I N T R O D U C T I O N 93

4.1 I N T R O D U C T I O N

There is a large class of supervised learning problems that can be cast in an
optimization of this form:

minθF L(θF) (122)

L(θF) = E(x,y)∼Nature
(

ℓ
(

y,F (x)
))

where the quantity ℓ(y,F (x)) expresses how much one tolerates error for confus-
ing the prediction F (x) with the groundtruth output y for input x. Our notations
abide by the deliberate starting epistemological choices of this dissertation in
section 1.2.2 especially for the Nature idealized distribution. The prediction func-
tion F is implemented here by a neural network (whose parameters are θF) but
we insist on the fact that it could be implemented by other tools that we can pick
from the enormous machine learning zoo of supervised learning of algorithms
[Bishop, 2006] while still keeping this current contribution relevant.

We will describe how to modify this Eq. (122) and how to create the right
optimization scheme while still being both mathematically principled and engi-
neeringly friendly in a general case with many applications. But first, we want to
debunk some widespread misunderstanding among practitioners in supervised
classification about how to interpret an output classification probability vector
with respect to uncertainty (which was our engineering starting point). Typically,
for an image classification problem (say with an AlexNet convolutional neural
network [Krizhevsky et al., 2012] trained on ImageNet [Fei-Fei, 2010]), the output
is a 1-sum positive vector of high dimensions (for K ≃ 103 categories for Ima-
geNet) in the form of conditional probability estimates (P(c = k|x))k=1,...,K for an
image x belonging to which category k ∈ J1, KK. Unfortunately, there is a detail
that is often overlooked concerning to the “knowing part |x” of the notation
P(c = k|x) which states in an implicit (and sometimes forgotten) fashion that the
input x should be taken from the same theoretical distribution both at training
and testing times. Indeed, at training time, the formulas are by construction
true because the images are taken from Nature (better approximated by large
cardinality dataset). At test time, the input examples must be coming from the
same Nature distribution for the knowing part of the probability being true which
is just a reasonable hypothesis in theory but that is difficult (and rather impos-
sible) to guarantee in practice (i. e. in every real-world and practical industrial
applications). The best proof of it is that if we give a completely random input
x taken from an arbitrary distribution, the system would still answer a 1-sum
positive vector output although the input does not belong to any of the categories
corresponding to these output vector entries due to its independently random
nature.

From these considerations, we draw 2 conclusions for each input x at test
time: (i) taking the maximum entry index k∗ of such outputs (P(c = k|x))k=1,...,K
has indeed some significance in a maximum a posteriori multinomial perspective

I N T R O D U C T I O N 94

in order to make a concrete decision but nevertheless (ii) the corresponding
maximum entry estimating P(c = k∗|x) has no or little uncertainty significance.
If uncertainty is a matter of interest, then the output should be considered as
a whole K-dimensional point (and not just the maximum of its entries) living
on the unit simplex and uncertainty should be a possibly blurry zone around
one predicted point in that space. Now that we have described some practical
issues related to uncertainty in classification, we present a general solution to
tackle supervised learning problems that takes into account some uncertainty
information.

The spectacular come back of deep learning techniques can be dated back to
2012, when Krizhevsky et al. [2012] dramatically improved image classification
scores. The suprise was considerable because one particular reason (among
others): beyond larger experimental scales, there was almost no conceptual dif-
ference between the initial LeNet [LeCun and Bengio, 1995] in 1995 and that
implementation except: the activation function (from the Sigmoid function to the
positive part function) for marginal accuracy improvements, impressive imple-
mentation improvements with the original usage of GPU hardware (Graphics
Processing Units) for speed (otherwise, training are infeasible for this kind of
year-long-type optimization with classic CPUs of traditional computers at that
time) and DropOut regularization [Srivastava et al., 2014] to cope with over-
parametrization of larger neural networks than usual. Indeed, DropOut consists
in injecting artificial random noise to learning paramaters during training with
the intuition that without that noise, testing accuracy will be more robustly
improved for generalization purposes.

The originality of what Gal [2016] proposed consists in continuing DropOut
at test time which implicitly provides (dependent) several outputs for each
input and then estimating law parameters on those (say mean and variance of a
Gaussian law). Averaging correlated outputs (the learned parameters are very
close) has unclear theoretical implications for the Monte Carlo estimation but
this method has the merit of pointing to a practical need to investigate sound
statistical approaches to cope with the black-box deserved reputation of neural
networks (outputs without "as-is" possible interpretations).

In the past, Nix and Weigend [1994] proposed to predict the mean and covari-
ance of each prediction by minimizing the Kullback-Leibler divergence between
the output empirical data distribution and the Gaussian output prediction (i. e.
maximizing the likelihood). It is based on the assumption that there is a suffi-
ciently large data set, i. e. , that their is no risk of overfitting and that the neural
network finds the correct regression.

In our work, we chose to suggest a lighter machinery (than the ones of Nix
and Weigend [1994] and Gal [2016]): instead of changing learning parameters to
implicitly produce an ensemble effect on the prediction side, we directly estimate
the parameters of a law on the prediction side. We removed the randomness
on the weights that the approach of Gal [2016] implies to put it entirely on the

R E V I S I T I N G D E E P S U P E RV I S E D L E A R N I N G 95

prediction side giving a beneficial out of local minimum escape effect to our system
while still keeping a valid Kullback-Leibler interpretation like the approach of
Nix and Weigend [1994] and even Bishop [1994]. We highly recommend careful
readers about uncertainty in deep learning to see the video of Zoubin Ghahramni1

to get an hindsighful overview of that kind of literature.
As recently describes by Detlefsen et al. [2019], estimating uncertainty is desir-

able goal in several contexts:

• for time series with Gaussian processes [Seeger, 2004] where means and
variances of predictions are estimated at each timestamps;

• the historical work of Bishop [1994] and [Nix and Weigend, 1994] using the
seminal idea of predicting the parameters of a law instead of a value that
we build upon;

• meanwhile the probabilistic framework of Bayesian techniques was also
useful thanks to MacKay [1992] and revisited by Kingma and Welling [2013];

• Monte Carlo Dropout of Gal [2016] with unclear theoretical consequences
as predictors are correlated;

• active learning while uncertainty prioritizes choice of informative training
examples [Huang et al., 2010].

In this work, we aim to generalize the inspiration of Nix and Weigend [1994]
for a larger part of supervised deep learning problems.

4.2 R E V I S I T I N G D E E P S U P E RV I S E D L E A R N I N G

As described in the state of the art chapter at section 1.2.3, classification and
regression are two important fields applications of supervised learning and are
thus both applications of this current uncertainty estimation contribution.

4.2.1 Classification

Neural Networks are a fundamentally continuous technology that progressively
train algorithms by taking into account its own errors on mini-batches of data
in order to improve thanks to stochastic gradient descent and back-propagation
throughout all the parameters [Goodfellow et al., 2016].

In fact, even plain classification with neural networks is a special case of re-
gression where a degenerated histograms encode categories (a clean category
corresponding to a vector with zero entries except for one entry one, hence
the name one-hot encoding) which has the advantage of naturally manipulating

1 https://www.youtube.com/watch?v=FD8l2vPU5FY

https://www.youtube.com/watch?v=FD8l2vPU5FY

R E V I S I T I N G D E E P S U P E RV I S E D L E A R N I N G 96

probabilities with float real numbers and of letting us access to the continuous re-
gression tools. For potentially K different categories, the supervised classification
literature tends to encourage the negative log-likelihood loss corresponding to:

ℓ(y, z) = −
1
K

y⊤ log(z) = −
1
K

K

∑
k=1

y(k) × log(z(k)) (123)

where the label y adopts the one-hot encoding which gives naturally access to its
relaxed probabilistic interpretations.

Depending on the scientific culture of the reader, Eq. (123) can also be seen
as the cross-entropy loss or even the Kullback-Leibler divergence between the
two discrete densities represented in 1-sum positive vectors z and y. Indeed, the
empirical likelihood of given predictions z = F (x) measured on (input, output)
pairs (x, y) from training data is

Likelihood =
(N

∏
i=1

K

∏
k=1

(z
(k)
i)y

(k)
i

)
1

NK
(124)

=
(N

∏
i=1

K

∏
k=1

(F (xi)
(k))y

(k)
i

)
1

NK

and the empirical negative log-likelihood gives:

− log(Likelihood) =
−1
NK

N

∑
i=1

K

∑
k=1

y
(k)
i × log(z(k)i) (125)

=
−1
NK

N

∑
i=1

K

∑
k=1

y
(k)
i × log(F (xi)

(k))

which justifies Eq. (123).
At the same time, if we put the Kullback-Leibler divergence KL(yi, zi) defini-

tion between two discrete densities yi and zi = F (xi):

KL(yi, zi) =
1
K

K

∑
k=1

y
(k)
i × log

(

y
(k)
i

z
(k)
i

)

=

(

1
K

K

∑
k=1

y
(k)
i log(y(k)

i)

)

− log(Likelihood)

(126)

but the first term 1
K ∑

K
k=1 y

(k)
i log(y(k)

i) does not depend on the input xi nor the
prediction zi which makes it removable towards a predictor optimization scheme

R E V I S I T I N G D E E P S U P E RV I S E D L E A R N I N G 97

which also justifies the minimization of Eq. (123) in this classification memory
aid:

Maximizing the classification likelihood

⇐⇒ Minimizing the classification cross-entropy loss

⇐⇒ Minimizing the mean Kullback-Leibler divergence

between groundtruth labels and predictions discrete densities(127)

4.2.2 Regression

For regression, y is continuous (floats) and possibly multivariate, e. g. the price
of rent corresponding to each location in a city, supply chain forecasts, weather
forecast maps. A stable and well-studied optimization tool is the quadratic
regression:

ℓ(y, z) = ‖y− z‖2
2 =

K

∑
k=1

(

y(k) − z(k)
)2

(128)

another loss is the Manhattan one:

ℓ(y, z) = ‖y− z‖1 =
K

∑
k=1
|y(k) − z(k)| (129)

to focus on small errors (as big errors are considerably more punished in quadratic
rather then Manhattan loss).

In a way that is similar to establishing a likelihood for cross-entropy classifi-
cation, it is possible to draw the links between regression and likelihood. As a
matter of fact, the likelihood of a Gaussian model on the output side centered on
the predictions F (x) with an unknown but fixed diagonal homothety covariance
matrix σIK (for the sake of understanding and lack of any sophisticated hypoth-
esis, it turns out we do not loose generality with σ = 1 in our particular case):

Likelihood =





N

∏
i=1

exp
(

− 1
2‖y−F (x)‖

2
2

)

(2π)
K
2





1
N

(130)

as the neg-log-likelihood gets:

− log(Likelihood) ∝
1
N

N

∑
i=1
‖yi −F (xi)‖

2
2 (131)

H U M : H Y P O T H E S I S F O R A N U N C E RTA I N T Y M O D E L 98

and likewise for a the Kullback-Leibler divergence between that Gaussian density
q centered at F (x) (with identity covariance without loss of generality) and the
distribution p of ground-truth labels y | x (when (x, y) ∼ Nature), we eventually
have:

KL(p, q) = Ey∼q log
(

q(y)

p(y)

)

=

(

Ey∼q log (q(y))

)

−

(

Ey∼q log (p(y))

)

(132)

(133)

but the first term is once again useless for optimizing F , which justifies the least
squares approach because:

−

(

Ey∼q log (p(y))

)

= −E(x,y)∼Nature



log

(

exp
(

− 1
2‖y−F (x)‖

2
2

)

(2π)
K
2

)





∝ E(x,y)∼Nature

(

‖y−F (x)‖2
2

)

In the end we re-establish a regression memory aid:

Maximizing the regression likelihood (134)

⇐⇒ Minimizing the regression quadratic loss

⇐⇒ Minimizing the mean Kullback-Leibler divergence

between the groundtruth outputs distribution and

the gaussianized predictions distribution

Please note that one could do exactly the same for Laplacians and Manhattan L1
loss instead of Gaussians and quadratic (eucidlean) L2 criterion.

4.3 H U M : H Y P O T H E S I S F O R A N U N C E RTA I N T Y M O D E L

The aim of this work is to propose a way to introduce some uncertainty modeliza-
tion in supervised machine learning presented above focusing on deep neural
networks for the sake of recent research attention. We want to build a model
that provides a probabilistic law prediction instead of a value prediction which is
following a Bayesian tradition. At test time, we would use for example the main
mode of our output law as the output value (i. e. in lieu of a value prediction) but
with some additional uncertainty information depending e. g. on how big the
support of the distribution is around that mode.

H U M : H Y P O T H E S I S F O R A N U N C E RTA I N T Y M O D E L 99

To put this in simple layman’s terms and with some abuse of terminology,
traditional approaches try to predict a specific value F (x) hoping to match the
label y in order to ideally reach even at test time some sort of conformity

y ≃ F (x) (135)

(approximately) as the loss function evaluation ℓ(y,F (x)) role is to avoid too
much discrepancy during training between prediction F (x) and groundtruth
label y.

In contrast, we propose to focus on uncertainty thanks to outputs correspond-
ing to interpretable parameters of a smooth distribution G(x) hoping that we
reach another kind of conformity

y ≈ G(x) (136)

(approximately). Indeed, the graphic slight difference of notation between the
symbols “≈” and “∼” inspired us. More mathematically, this work relies on
two statements. First, thanks to the definition of Dirac distributions, we easily
establish that we always have:

(∀(x, y) ∈ R
D ×R

K) ℓ
(

y,F (x)
)

=
∫

RK
ℓ
(

y, z
)

× δF (x)(z)dz (137)
a
= Ez∼δF (x)

(

ℓ
(

y, z
))

where δa is the Dirac distribution located at a that gives that same a value for
when integrated throughout space. Second, as recalled in section 1.5.1 with the
Robbins-Monro theorem, we do not need to have access at precisely the exact
evaluation of the minimization objective or of its gradient in order to minimize
it by stochastic gradient descent: only a biased-free estimator of the gradient is
required.

The core idea of this chapter is to ask: Why not taking a more convenient and more

interpretable distribution than the Dirac distribution? in Eq. (137). This intuition is
motivated by the fact that using sum Dirac distributions is considering Nature as
just a set of scattered points whereas a smooth distribution gives some consistency
to our so-called Nature modelization. Now, if we are emancipated from the
previous uncertain-free formulation of section 4.2, then in terms of modelling
combining Eq. (137) and Eq. (122) gets:

min
G

E(x,y)∼Nature

[

Ez∼G(x)

[

ℓ
(

y, z
)

]]

(138)

and G(x) is a prediction law whereas F (x) previously was a prediction value.
A discretized version of this approach has been extensively applied to supply
chain forecasts by the Lokad company [Vermorel, 2018] since few years ago. In
this chapter, dealing with a wider range of applications (especially suitable with

H U M : H Y P O T H E S I S F O R A N U N C E RTA I N T Y M O D E L 100

neural networks as we will see) in a more continuous fashion is our contribution
to the original and seminal idea of Vermorel [2018].

In terms of optimization of the parameters θG of function G predicting the out-
put law G(x), the good news is that the same Robbins-Monro theorem [Robbins
and Monro, 1951] as in section 1.5.1 justifies the usual Hebbian learning rule of
stochastic gradient descent. For the sake of clarity we admit that what is true
to the standard stochastic gradient descent algorithms is also true for modern
stochastic algorithmical routines like Adam [Kingma and Ba, 2014] which benefits
from the rest of regular contemporary deep learning tools [Abadi et al., 2015,
Paszke et al., 2017].

For the usual uncertainty-free settings, we usually had:

θt+1
F = θt

F − αt f̂t (139)

where αt is the learning rate and f̂t = 1
B ∑

B
b=1∇θF

(

ℓ
(

yib ,F (xib)
))

with ib ∼
UN(1, N) is a random uniform index parsing the N-cardinality training dataset
in mini-batches of size B totalling B gradient evaluations per mini-batch.

In our proposed uncertainty modelling, we get:

θt+1
G = θt

G − αtĝt (140)

with same kind of learning rate αt as before. The main difference is in the bias-free
gradient estimation that needs a little Monte Carlo estimation (as M stands for
Monte Carlo number of iterations):

ĝt =
1

MB

M

∑
m=1

B

∑
b=1
∇θG

(

ℓ
(

yib , zm,ib

))

(141)

where we still have ib ∼ UN(1, N) the same kind of random uniform index as
before but we also have M sampled outputs from the same prediction law for each
input xib totalling MB gradient evaluations per mini-batch: zm,ib ∼ G(xib) which
is M times more computations than before but there is no guarantee confirming
or infirming that a big B or a big M could improve convergence or results as
the two sources of stochasticity are related (maybe even a simple M = B = 1
scenario could give good resuls).

There is a strong link between our technique and the Reparametrization Trick

[Kingma and Welling, 2013] for initially variational auto-encoders problematics.
Indeed, for the authors, several probabilistic laws, the law parameters can be
represented in the gradient calculus from its normalized version (e. g. without
mean nor unusual standard deviation for the Gaussian law) of the same simplified
probabilistic law accordingly distorted to fit the desired parametrized law. Thanks
to three special cases, we will now precisely see how this is all working thanks to
pseudo-random generators of our computers.

H U M : H Y P O T H E S I S F O R A N U N C E RTA I N T Y M O D E L 101

4.3.1 Uncertain Logistic Regression for Classification

In logistic regression classification, we recall from section 4.2.1 that for the general
optimization minF E(x,y)∼Nature [ℓ(y,F (x))] is specified for logistic classification
by:

ℓ(y, z) = −
1
K

y⊤ log(z) (142)

and to maintain the simplex-constraint we propose a uniform law (as segments
always remain inside a convex set) for applying Eq. (141):

zm,ib ∼ URK

(

A(xib),B(xib)
)

(143)

⇐⇒ tm,ib ∼ UR(0, 1) and zm,ib = tm,ib ×A(xib) + (1− tm,ib)×B(xib)

where functions A and B give class membership probabilities and are imple-
mented with regular neural networks with a last SoftMax layer and it all becomes:

ĝt =
1

MB

M

∑
m=1

B

∑
b=1
∇θG

(

ℓ

(

yib , tm,ib ×A(xib) + (1− tm,ib)×B(xib)

))

(144)

=
1

MB

M

∑
m=1

B

∑
b=1
∇θG

(

−y⊤ib log

(

tm,ib ×A(xib) + (1− tm,ib)×B(xib)

))

to be compared to Eq. (141).
In these settings, the prediction uncertainty can be measured in 0 ≤ 1

2‖A(xib)−
B(xib)‖1 ≤ 1 which justifies our probabilistic model. In terms of Kullback-
Leibler divergence, minimizing the mean divergence between the fixed discrete
groundtruth density y and the random discrete prediction density z ∼ G(x)
this way, is useful even at a category level by superposing both A(x) and B(x)
histograms (i. e. positive 1-sum vectors).

Out of curiosity, we can explore what is happening for more than 2 histograms
for the sake of algorithms.

zm,ib ∼ URK

(

A1(xib), . . . ,Ac(xib), . . . ,AC(xib)
)

(145)

⇐⇒ tm,ib ∼ ∆C and zm,ib =
C

∑
c=1

t
(c)
m,ib
×Ac(xib)

where ∆C is the uniform distribution over the C-order simplex (i. e. ∑
C
c=1 t

(c)
m,ib

= 1).
To uniformly sample inside that C-order simplex, first, we first sample uniformly
C− 1 values between 0 and 1 um,ib,c ∼ UR(0, 1) (and we rearranged the indices
corresponding to c such that they are re-ordered in increasing order), second we
recursively build:

t
(1)
m,ib

= um,ib,1 (146)

t
(c)
m,ib

= um,ib,c+1 − um,ib,c for c ∈ J2, C− 1K

t
(C)
m,ib

= 1− um,ib,C−1

H U M : H Y P O T H E S I S F O R A N U N C E RTA I N T Y M O D E L 102

that cancels out in a sum of 1 and finally we get:

ĝt =
1

MB

M

∑
m=1

B

∑
b=1
∇θG

(

ℓ

(

yib ,
C

∑
c=1

t
(c)
m,ib
×Ac(xib)

))

(147)

which implies an output law that fires in a convex set drawn by the polygon made
of (Ac(x))c=1,...,C for each input x. Although this formulation is theoretically
pleasing, it did not provide, in our experience any additional interpretation ease
nor accuracy improvements, yet.

4.3.2 Uncertain Least Square for Regression

Likewise, in least square regression:

ℓ(y, z) = ‖y− z‖2
2 (148)

and we choose the Gaussian distribution to obtain:

zm,ib ∼ N
(

µ(xib), C(xib)× C(xib)
⊤
)

(149)

⇐⇒ ǫm,ib ∼ N (0, IK) and zm,ib = µ(xib) + C(xib)× ǫm,ib

where function µ is a vanilla neural network and C is a lower-triangular matrix
(with possible bounded diagonal values thanks to affine Sigmoids see Table 1 at
page 14). For the Hebbian rule we update with:

ĝt =
1

BM

B

∑
b=1

M

∑
m=1
∇θG

(

‖yi −
(

µ(xib) + C(xib)× ǫm,ib

)

‖2
2

)

(150)

In these settings, the uncertainty information is contained in the C(xib) ×
C(xib)

⊤ covariance matrix as we have fitted a Gaussian to our prediction outputs.
Obviously, for the sake of completeness, we have modelled a Gaussian distribu-
tion with a full covariance matrix but a diagonal covariance matrix or a simple
proportional to the identity covariance matrix is most of the times enough in
real-world applications.

In terms of Kullback-Leibler divergence, we still have the same probabilistic
interpretations as we minimize the mean over input x of the divergence between
the deterministic groundtruth labels y Dirac distribution and the smooth Gaus-
sian distribution N

(

µ(x), C(x)× C(x)⊤
)

which means we did manage not to
sacrifice interpretation for uncertainty. The mean µ(x) plays the role of the good
old-fashioned value prediction that is tainted by incertainty C(x)× C(x)⊤.

4.3.3 Uncertain Mixtures for Regression and Classification

Sometimes, beyond mono-modal distribution for regression (e. g. often Gaussian)
and uniform law for classification, one can imagine a non-continuous spectrum of

H U M : H Y P O T H E S I S F O R A N U N C E RTA I N T Y M O D E L 103

outcomes like in supply chain forecasts [Vermorel, 2018] to handle several discrete
scenarios at the same time. This way, one can benefit from the computational
power of machines to process newly predictable outcomes. This is the reason why
for each input x we tackle here one finite mixture q(x) of C distributions with
proportions π(x) and components (gk(x))

K
k=1 (that are themselves distributions)

which can written as:

q(x) =
C

∑
c=1

πc(x)× gc(x) (151)

Just by the continuous integral definition of the expectation, we obtain:

Ez∼q (ℓ(y, z)) =
C

∑
c=1

πc(x)×Ezc∼gc(x) [ℓ(y, zc)] (152)

which facilitates our mixture use because we can directly use the formulas of the
previous sections 4.3.1 and 4.3.2 depending on the applications we have:

ĝt =
1

MB

M

∑
m=1

B

∑
b=1

C

∑
c=1
∇θG

(

πc(x)× ℓ
(

yib , zm,ib,c
))

with zm,ib,c ∼ Gc(xib) (153)

where the previous technique of reparametrization as previously can re-applied
to generate samples from Gc(xib).

In this mixture scenario, the parameters set θG contains the parameters θπ of
the neural network π that gives the C proportions and each of the parameters
θGc

s that parametrize the laws Gc(x)s. Two special cases of mixtures attract our
attention:

G A U S S I A N M I X T U R E F O R R E G R E S S I O N Interestingly, this corresponds to the
Mixture Density Networks designed by Bishop [1994] in the 1990s;

D I R A C M I X T U R E F O R C L A S S I FI C AT I O N For a high number of possible cate-
gories (K ≃ 103 in ImageNet [Fei-Fei, 2010]), allowing a mixture of a much
reduced number C ∼ 101 of components is useful to handle both uncer-
tainty and close categories in a more interpretable way than in the usual
supervised deep learning apparatus.

e

4.3.4 Links with Other techniques

Interestingly, our straightforward yet efficient approach has some connections
with other techniques. Let us take into account that the discrepancy function
ℓ in Eq. (138), if we recall that in classification and regression cases, we chose
ℓ(y, z) = −y⊤ log(z) and ℓ(y, z) = ‖y− z‖2

2 respectively. In both cases, for any

A L G O R I T H M A N D P R A C T I C A L I M P L E M E N TAT I O N D E TA I L S 104

label y, we know that the function z 7→ ℓ(y, z) is convex and thus, thanks to
Jensen inequality for any distribution q of predicted output (e. g. q = G(x)):

Ez∼q (ℓ(y, z)) ≥ ℓ
(

y, Ez∼q(z)
)

(154)

which implies that:

E(x,y)∼Nature

[

Ez∼G(x)

[

ℓ
(

y, z
)

]]

≥ E(x,y)∼Nature

[

ℓ

(

y, Ez∼G(x)

(

z
)

)]

(155)

which means that for a non-Dirac global minimum G∗ of Eq. (138) corresponding
to the lower bounded right hand side of Eq. (155), we know that the global
minimum is also reached at

Gd : z 7→ Ez∼G∗(x)(z) (156)

One possible interpretation of that could be The deterministic optimization and our

optimization share some global minima if they exist. What is interesting to mention is
that in practice, first, space zones that is very close to the training data manifold
have roughly the same result for with or without uncertainty model and second,
in-between zoom have better results and interpretation with out uncertainty model.
Another way to look at it is to consider our technique like a DropOut [Srivastava
et al., 2014] technique consisting in adding some randomness to avoid being
stuck in local minima. Our approach also looks like the one of ? but we do linear
combination on the output instead of doing it at the input like them. Our method
needs further investigation beyond showing good results because of intringuing
self-regularized optimization phenomena thanks to randomness. Although, it is
rigorous to separate model from optimization, in our case, it is possible that the
additional randomness of our optimization technique actual makes our model
more robust and it is unclear to attribute improvements between model and
optimization as we will see in the next section.

4.4 A L G O R I T H M A N D P R A C T I C A L I M P L E M E N TAT I O N D E TA I L S

Based on the updated Hebbian rules, we previously described in normal and
out uncertain contexts, the stochastic gradient descent algorithm optimizes the
parameters of our neural networks. Using the (pseudo)-random number genera-
tors of our computers, we were able to generalize the Robbins-Monro theorem
allowing us to calculate our bias-free estimators of gradients at each stochastic
gradient iteration.

4.4.1 Safe Computations

Some numerical overflow instabilities have been studied and avoided thanks
to the so-called logsumexp trick. This technique must be revisited in our case.

A L G O R I T H M A N D P R A C T I C A L I M P L E M E N TAT I O N D E TA I L S 105

Let’s first briefly describe what it usually is and then how we can adapt it for our
implementations.

Even though the logsumexp trick can be used in many scenarios, we choose to
describe it in the special example of the previouly presented logistic regression of
classification for the sake of pragmatism. In neural networks usual implementa-
tions, the cross-entropy loss is applied after the computation of a SoftMax layer
on what we call logits c = [c1, . . . , ck, . . . , cK] (see the previously described in
Table 1 at page 14). At some point, there is a need to compute the gradient of the
quantity v ∈ R

K:

v = log(SoftMax(c)) (157)

with respect to the neural network parameters involved in the calculus of c. If we
take a closer look to v, we expand it to:

vk = log

(

exp(ck)

∑
K
k′=1 exp(ck′)

)

= log(exp(ck))− log

(

K

∑
k′=1

exp(ck′)

)

(158)

The direct computation of exp(ck) where ck ≥ 30 is already bigger than 1013

which makes it all unfeasible for a modern computer even though we know that
log(exp(ck)) ≃ log(1013) ≃ 30 is a reasonable number. For any value M ∈ R, we
can use the fact that:

vk = M + log(exp(ck −M))−M− log

(

K

∑
k′=1

exp(ck′ −M)

)

= log(exp(ck −M))− log

(

K

∑
k′=1

exp(ck′ −M)

)

(159)

and for the specific choice M = maxk ck, our numerical problems disappear
because all exponential arguments ck −M ≤ 0 are more suitable for the compu-
tation of exp(ck −M) ≤ 1 without approximation.

Nowadays deep learning tools such as PyTorch [Paszke et al., 2017], Tensorflow
[Abadi et al., 2015] and MXNet [Chen et al., 2015] applies that logsumexp trick
implicitly behind the scene but this can reused in this present work. We can remark
that the idea consisted in avoiding big exponentials by guaranteeing negativity
of their arguments thanks to the maximum entry that is substracted for safer
computations.

Likewise, in our uncertainty estimation context, we have to compute at some
point the quantity w ∈ R

K for t ∈ [0, 1]:

w = log (t× SoftMax(a) + (1− t)× SoftMax(b)) (160)

where a ∈ R
K and b ∈ R

K come from neural networks. With that negative
argument exponentials technique in mind, we understand that the SoftMax
function is invariant to uniform shifting:

(∀M ∈ R) SoftMax(c) = SoftMax(c−M) (161)

A L G O R I T H M A N D P R A C T I C A L I M P L E M E N TAT I O N D E TA I L S 106

thus we propose for any P ∈ R and Q ∈ R:

wk = log

(

t×
exp(ak)

∑
K
k′=1 exp(ak′)

+ (1− t)×
exp(bk)

∑
K
k′=1 exp(bk′)

)

= log

(

t×
exp(ak − P)

∑
K
k′=1 exp(ak′ − P)

+ (1− t)×
exp(bk −Q)

∑
K
k′=1 exp(bk′ −Q)

)

and to guarantee the same negative exponentials properties as before, we choose:
P = maxk ak and Q = maxk bk which provides much more numerical stability
when it comes to computing w and its gradient with respect to the parameters
a fortiori.

In the special case where the number of classes K = 2, practioners use a
Sigmoid function applied on a logit value c and the 2 estimated probabilities get
[Sigmoid(c), 1− Sigmoid(c)] but the SoftMax function is a generalization of the
Sigmoid for that K = 2 binary case thanks to that relationship:

SoftMax ([0,−c]) = [Sigmoid(c), Sigmoid(−c)] (162)

= [Sigmoid(c), 1− Sigmoid(c)]

which gives us Eq. (162) in that K = 2 binary special case for no supplementary
effort.

4.4.2 Re-Using Uncertainty-Free Models

In 2018, Apple and Amazon reached $1012 of market capitalization and in 2019
Microsoft followed in 2020 by Alphabet that owns Google also did reach that
financial milestone while Facebook is at roughly $0.6 × 1012. So we humbly
imagine a way to use all these powerful open-source means to better train our
uncertainty models just to stand on the shoulders of giants.

In order to re-use all that wealth of trained models, we use the idea that
an uncertainty-free model is a model that has no uncertainty: for example, a
Gaussian density with no covariance becomes a Dirac distribution, a uniform
density with equal bounds also becomes a Dirac distribution. We can briefly
explain this strategy in two supervised instances:

R E G R E S S I O N In our Gaussian regression case, µ can be reasonably well-initialized
by its uncertainty-free already trained counterpart with a zero-initialized
Cholesky function C for the covariance matrix.

C = 0 ⇐⇒ no uncertainty (163)

C L A S S I FI C AT I O N In our uniform classification case, both A and B can be ini-
tialized by the same weights (while the random generator of t will give

A L G O R I T H M A N D P R A C T I C A L I M P L E M E N TAT I O N D E TA I L S 107

different gradients starting from the very first mini-batch gradient compu-
tation).

A = B ⇐⇒ no uncertainty (164)

In our experiments, approximately 10% more of training epochs is enough to
get relevant additional uncertainty information. We must insist on the fact that
we did not want to improve accuracy of already impressively sophisticated
algorithms (at the very least with an engineering perspective and for means of
distributed computational power) but only we only wanted to get some new
uncertainty information.

4.4.3 Algorithms

There exists many ways to implement the neural networks from our HUM (Hy-
pothesis of Uncertainty Model). In this section, we provide a binary classification
pseudo-code and another pseudo-code for regression.

Neural Networks are often built in layers which correspond to a composition
of elementary functions (even in deep residual learning [He et al., 2016], we can
still separate blocks of layers). This is good news for cheap learning of heavy
neural networks with uncertainty because they can be initialized with worldwide
companies means but without uncertainty. For example, in classification, a neural
network corresponding to a function F can be thus separated it into F = G ◦ H
and we create 2 functions, namely A = GA ◦ H and B = GB ◦ H where function
H is shared whereas both GA and GB are equally initialized by the previous
training output G.

A L G O R I T H M A N D P R A C T I C A L I M P L E M E N TAT I O N D E TA I L S 108

Algorithm 5 Classification with Uncertainty

1: Input: Data (xi, yi)i=1,...,N where xi ∈ R
D and yi ∈ {0, 1}K ∩

∆K, a mini-batch size B and a Monte Carlo parameter M ∈
N
∗

2: Initialization: θ = {θH, θGA , θGB} initialized from a regu-
lar uncertainty-free classification optimization scheme for
respectivelyH,A and B;

3: while θ has not converged do

4: Free all gradients accumulators
5: Sample a mini-batch of size B from the dataset

(xib , yib)b=1,...,B where ib ∼ UN(1, N)

6: Sample BM values from a pseudo-random generator

tb,m ∼ UR(0, 1) for b = 1, . . . , B and m = 1, . . . , M

7: Compute

hb ← H(xib), ab ← GA(hb) and bb ← GB(hb) for b = 1, . . . , B

8: Apply the logsumexp trick ab ← ab −maxk a
(k)
b and bb ←

bb −maxk b
(k)
b

9: And finally

L ←
−1
BM

M

∑
m=1

B

∑
b=1

y⊤ib log
(

tb,m×SoftMax(ab)+ (1− tb,m)×SoftMax(bb)
)

10: Perform a gradient descent step of L to update θ

11: end while

A L G O R I T H M A N D P R A C T I C A L I M P L E M E N TAT I O N D E TA I L S 109

Algorithm 6 Regression with Uncertainty

1: Input: Data (xi, yi)i=1,...,N where xi ∈ R
D and yi ∈ R

K, a
mini-batch size B and a Monte Carlo parameter M ∈ N

∗

2: Initialization: θµ for a mean function µ initialized from a reg-
ular uncertainty-free regression optimization scheme; θC for
a lower triangular matrix function C initialized by a diagonal
of training standard deviations; θ = {θµ, θC}

3: while θ has not converged do

4: Free all gradients accumulators
5: Sample a mini-batch of size B from the dataset

(xib , yib)b=1,...,B where ib ∼ UN(1, N)

6: Sample BM values from a pseudo-random generator

ǫb,m ∼ N (0K, IK)

7: Compute

mb ← µ(xib) and Sb ← C(xib)

8: The loss gets:

L ←
1

BM

M

∑
m=1

B

∑
b=1
‖mb + Sb × ǫb,m − yib‖

2
2

9: Perform a gradient descent step of L to update θ

10: end while

E X P E R I M E N T S 110

4.5 E X P E R I M E N T S

4.5.1 Synthetic data

In order to go deeper with our approach, we study a toy dataset called “Two
Moons” with 1000 points for each of the 2 groups (blue and red 2D dots) in 2
dimensions as presented in Fig. 21 in two scenarios: an easily separable one and
another much noisier one. In this supervised classification exercize, the easy

Figure 21: “Two Moons” Dataset in two Scenarios: a clear and easy
case (left) and a noisy and difficult case (right)

case wihtout noise in not very interesting from an uncertainty perspective which
makes our approach unnecessary on the left. On the contrary, the difficult case is
more relevant because some space regions imply legitimate doubt levels on the
right.

We trained a small multi-layer perceptron on this dataset to investigate what
was empirically at stake: for each input [x1, x2]

⊤ we predict 2 probability vectors
p = [a, b]⊤ and q = [c, d]⊤ as bounds of a uniform prediction law ŷ ∼ UR(p, q)

following section 4.3.1 (page 98). Thus, it is fair to consider u = ‖p−q‖
2 ∈ [0, 1] as

an evaluation of uncertainty. Our goal is not to provide any classification accuracy
improvements but only some more additional information about uncertainty. So
we empirically checked on this synthetic problem if our technique was able to
preserve good classification results which is the case in Fig. 22 with yellow for
the blue class, a purple for the red class and small region of green for the blurry
boundary with a thickness that is understandable when considering the mixed
classes. Now we can see if it is also providing a useful uncertainty information in
Fig. 23.

Here we see an interesting phenomenon: the prediction is highly confident
almost everywhere in space (purple low level of uncertainty) except in the bound-
ary which can be split in two: (i) low uncertainty boundary in purple at the center
of the figure and high uncertainty far from where the points are (whereas the
boundary is green in the previous Fig. 22 wihtout distinction of having a 0.5
probability of being blue.)

These encouraging synthetic results exhibits two ways of not knowing: with
uncertainty in yellow in Fig. 23 and with certainty in purple in Fig. 23. The
Dirac phenomenon we suspected in section 4.3.4 is occuring: close to the training

E X P E R I M E N T S 111

manifold, the uniform distribution we get is a Dirac but going further from the
training manifold grows some thickness away from the Dirac distribution.

E X P E R I M E N T S 112

Figure 22: “Two Moons” Map of Prediction Probability of being blue
a+c

2

Figure 23: “Two Moons” Map of Uncertainty Probability ‖p−q‖1
2 (the

higher, the less certain). Blue became white for readibility
reasons.

E X P E R I M E N T S 113

4.5.2 Dogs and Wolves

To illustrate our approach, we took a image classification task that is difficult
even for us as human beings: distinguishing domesticated canide animals (say
mainly dogs) and wild canide animals (say wolves, foxes etc.) that we took
from the ImageNet dataset [Fei-Fei, 2010] (and its tree-structured label ontology).
We formed a dataset2 of a balanced 800 images per class training set and 200
images per class validation set on which we measure accuracy. We also formed a
test set from the ImageNet test dataset (annotated by the ResNet-152 available
via PyTorch) with 100 cats, 100 dogs and 100 wolves to evaluate test error and
extrapolation uncertainty (i. e. out of distribution) as cats are not wolves nor dogs
3.

(a) Dog (b) Wolves

Figure 24: Two examples of images from our “Dogs and Wolves”
dataset taken from Imagenet

As Greenspan et al. [2016] explains, using a convolution neural networks
(CNN) trained from a natural images classification problem with plenty of labeled
data (e. g. ImageNet [Fei-Fei, 2010]) is useful for a medical images classification
problem that suffered from a notorious lack of large scale labeled datasets until
recently. Indeed, chopping the head off a CNN is relevant as a feature extractor even
for a very different problem which is understandable because early computer
vision cues such as the relationship between contours and gradients in the first
layers seems to be independent from the image domain and thus shared among
all computer vision tasks. Meanwhile, some empirical studies tend to show that
the first layers of a convolutional network often correspond to Gabor functions
for general-purpose computer vision applications and the deeper layers can be
interpreted in more sophisticated ways [Zeiler and Fergus, 2014].

Inspired by these successful ideas and intuitions, first we build a convolutional
neural network like in Fig. 25 close to AlexNet [Krizhevsky et al., 2012] but we
double the number of ending layers and second we make all the first layers
shared for two separate ending dense neural networks. Indeed for our “Dogs

2 http://harchaoui.org/warith/dogs_wolves.zip

3 http://harchaoui.org/warith/imagenet_test_resnet152_pytorch.zip

http://harchaoui.org/warith/dogs_wolves.zip
http://harchaoui.org/warith/imagenet_test_resnet152_pytorch.zip

E X P E R I M E N T S 114

and Wolves” images classification problem, we need two outputs with the belief
that some features are shared among these virtually two neural networks. We do
not entirely double the number of parameters with two separate convolutional
neural networks because we want to prevent our learning procedure from some
bad overfitting effects of over-parametrization and gain some more speed.

Figure 25: Our Convolutional Neural Network in two parts separated
by the tick blue line: (i) some shared convolutional and fully-
connected layers on the left and (ii) a few fully-connected
layers on the right to finally output the two bounds of our
uniform prediction law.

Our “Dogs and Wolves” images classification problem looks like our “Two
Moons” noisy case with much higher dimensionality and where even human
beings might disagree sometimes. In fact, the very notion of being domesticated
is human-related for example. Numerically, we observe a slight improvement of
less than 1% of validation accuracy from a 76% in normal uncertainty-free training
and 77% with our HUM technique. In fact, we initialized as previously stated in
section 4.4.2 our HUM convolutional neural network with a classic uncertainty-
free regular approach. The goal here was not to improve the validation score but
only to check if we are not loosing some which is valid as Fig. 26 is showing little
overlaid differences. The real benefit of our HUM approach is the uncertainty
estimation. Thus, it seems that our HUM approach on a difficult computer vision
task is efficient.

In Table. 3 we provide some of the most uncertain examples according to our
HUM CNN: we took the top-8 uncertain (considering ‖p−q‖1

2 as an evaluation
of uncertainty) images of our testing set (that includes cats that were not seen
during training). Qualitatively, we see that just taking the entropy of a regular
CNN as an uncertainty criterion does not perform as well in Table. 4.

E X P E R I M E N T S 115

0 100 200 300 400 500
Epochs

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

A
cc

ur
ac

y

Regular Training
HUM Training

Figure 26: Validation score w.r.t. the training epochs comparing our
HUM CNN with its initialized regular CNN counterpart
(the higher, the better, 1.0 means 100% of good classification
on the validation set)

Table 3: Top-8 of most uncertain testing images of our “Dogs and
Wolves” dataset according to our HUM CNN

Table 4: Top-8 of most entropic testing images of our “Dogs and Wolves”
dataset according to a regular CNN

F U T U R E W O R K A N D C O N C L U S I O N 116

4.6 F U T U R E W O R K A N D C O N C L U S I O N

In this work, we revisited an old problematic in Machine Learning and more
generally in Statistics about dealing with estimation error that is inherent to real-
world studied phenomena. An interesting avenue of research could be to refine
the "far from dataset" kind of uncertainty: revisiting the Wasserstein distance
between the query Dirac and the training dataset would pragmatically give a
geometric aspect to uncertainty.

This field of research has a wide of applications: active learning would choose
examples based on predicted uncertainty which is intuitively (at least) reasonable:
to discover what we are unsure of first. There is also another promising application:
reinforcement learning without reward to learn how to navigate in a new envi-
ronement without task which would give some complementary understanding
to the notion of curiosity in the scientific effort of Burda et al. [2018] and we could
consider that diminishing an uncertainty estimation would be the cornerstone of
a reinforcement learning policy. Indeed, even in regular reinforcement learning,
training inescapably boils down to distentangling an exploration / exploitation
dilemma [Sutton and Barto, 2018]: on the one hand, exploration is testing unusual
(or risky) patterns of actions with the hope to expect possibly higher rewards
and on the other hand, exploitation is benefiting from known (or conservative)
patterns of actions in order to better guarantee a certain level of rewards. This
contribution about uncertainty estimation could help breaking the dilemma.
The rationale behind could consist in saying that one should explore where un-
certainty is high and exploit where uncertainty is low and value estimation is
high.

It seems interesting to also investigate the blurry prediction provided by un-
certainty models to help for more robustness to adversarial examples (example
designed to fool supervisedly trained algorithms, see the survey of Yuan et al.
[2019] for details). At least, this kind of systems would be fooled but the pre-
dictions would have larger standard deviation for example for this deceiving
points.

C O N C L U S I O N

117

A P P E N D I X : G E N E R AT I V E A D V E R S A R I A L N E T W O R K S
P R E T R A I N I N G

I N T R O D U C T I O N

For dramatic computational speed improvements reasons, some pretraining
techniques from 1990s are less popular nowadays in neural networks training.
Recently, the rise of Generative Adversarial Networks (GANs) initiated by Good-
fellow et al. [2014] is revisiting a new kind of optimization: not an usual mini-
mization problem but a min-max problem hence the adjective adversarial which is
thus more difficult to monitor. In practice, for same domain (or medium) data,
it is possible to use the same structure and hyper-parameters as other authors
e. g. the DCGAN structure by Radford et al. [2015] for images. Unfortunately, for
custom data such as genomics data, there is a need for practical rule of thumbs to
begin working for new kinds of data and neural networks and particularly wirh
GANs.

Historically, neural networks experts used to train an unsupervised auto-
encoder, in order to keep the encoder as an initialization of the neural network
now trained in a supervised fashion. This pre-training technique seems to save a
lot of time during an era of expensive and long computations. The aim of this
appendix is to follow this kind of reasoning to initialize GANs that are notoriously
painful to train and monitor without further data knowledge.

S I M I L A R O B J E C T I V E S

Let’s study the Wasserstein GAN [Arjovsky et al., 2017] objective function with a
generator G, a real data distribution p living in R

D, and noise generator distribu-
tion n living in R

d

min
G

W(p, qG) (165)

where the Wasserstein distance W(p, qG) is defined between the distributions of
real data p and generator data qG (defined by y ∼ qG ⇐⇒ z ∼ n, and y = G(z))

W(p, qG) = min
γ∈Γ(p,qG)

E(x,y)∼γ [‖y− x‖2] = min
γ′∈Γ(p,n)

E(x,z)∼γ′ [‖G(z)− x‖2] (166)

where Γ(p, q) stands for the set of couplings γ based on the two marginal dis-
tributions p and q. In the GAN literature, this is reformulated by thanks to
the Kantorovich-Rubinstein duality but in this appendix, we will still use the
Wasserstein formulation.

118

F U T U R E W O R K A N D C O N C L U S I O N 119

Indeed, if we look at that auto-encoder objective function made of an encoder
E and decoder D:

min
E ,D

AE(p, E ,D) (167)

where the AE operator is simply the mean distance between the original data
from p and the same data distorted by an encoder E followed by a decoder D:

AE(p, pE ,D) = Ex∼p [‖D ◦ E(x)− x‖2] (168)

We believe that equations Eq. (166) and Eq. (168) are similar. Training an auto-
encoder and training a generative adversarial network are both unsupervised
but auto-encoder are easier to train because there is only a one-way minimization
which is not the case for GANs that have two-ways type of minimization (min-
max) w.r.t. different parameters.

By training an auto-encoder, we get a reasonable reconstruction loss for output
functions E encoder and D decoder. Now, it is possible to estimate the mean

µ = 1
N ∑

N
i=1 E(xi) and covariance σ =

√

1
N ∑

N
i=1 (E(xi)− µ)2 (with element-

wise square root and square functions). The intuition is that for a Gaussian
noise ǫ ∼ N (0d, Id), then the decoded points D(µ + σ × ǫ) (with element-wise
product) has a distribution that is close to decoded codes D ◦ E(x) which is
close to the original data x. This way, we made a reasonable initialization for a
generator made of a Gaussian noise into a linear layer from empirical mean µ

and standard deviations σ followed by the decoder function D.
Early on since the beginning of the GAN literature in 2014, deep learning

scientists saw the potential of seeing the min-max optimization scheme as the
minimization of a discrepancy between real and generated data where that dis-
crepancy required and adversarial optimization for estimation [Goodfellow, 2016]
(i. e. a maximization of an objective to be minimized in fine). Back to our work,
at this point, the auto-encoder training was a traditional one-way minimization
but now the adversarial network (or critic against the generator) is needed to
measure the discrepancy we just mentioned between real and generated data. In
our Wasserstein discrepancy case, this correponds to only maximization via the
Kantorovich-Rubinstein duality of the Wasserstein distance. Once both the gener-
ator from the auto-encoder minimization and next the critic from the discrepancy
maximization for estimation are done. We actually not only know how far our
generator (i. e. decoder) combined with our noise generator is from the real data
distribution but we also get a convincing initialization for regular GANs training.

To sum up, we propose three steps:

1. Auto-Encoder Minimization for the euclidean reconstruction error to be
low;

2. Critic Maximization until real v. s. generated discrepancy has plateaued
out;

F U T U R E W O R K A N D C O N C L U S I O N 120

3. Regular GAN Min-Max optimization with a generator initialized by a
Gaussian fitting the encoded codes followed by the decoder on the one side
and the critic previously maximizing the real v. s. generated discrepancy on
the other side;

which is much easier for monitoring and prototyping as getting rid off an unpre-
dictable objective variations behavior especially at the first epochs contributes to
acceleration of development and robustness w.r.t. uncontrolled objective varia-
tions. In these conditions, finding hyper-parameters is much more simplified.

E X P E R I M E N T S T R A I N I N G D C G A N O N C I FA R - 10

Generative Adversarial Networks [Goodfellow et al., 2014] really attracted the
research community attention when image rendering started to get convincing
especially with the spark ignition DCGAN work of Radford et al. [2015] with a
recent research and engineering accomplishment in extremely large scale settings
of BigGAN [Brock et al., 2019] and mainstream press demos4. Following this
trend, we use the same neural network structure as DCGAN [Radford et al., 2015]
shown in Fig. 27 for a Wasserstein GAN trained on CIFAR-10 images dataset [?].

64x64x3

32x32x128
16x16x256

8x8x512 4x4x1024
100

conv 5x5

stride 2

conv 5x5

stride 2

conv 5x5

stride 2

conv 5x5

stride 2
dense

Figure 27: DCGAN encoder structure, the critic has same structure
(with an additional 100-1 perceptron layer) and the de-
coder/generator has a symmetric structure

In this section, we use Adam [Kingma and Ba, 2014] default parameter with
10−6 for generator learning rate and 10−5 for critic learning rate and also 10−5 the
one-way minimization learning rate. Moreover, in min-max optimizations, we
do 10 max iterations followed by 1 min iteration for each data mini-batch. The
first step according to our section 4.6 consists in training an auto-encoder. Fig. 28
is showing the evolution of the minimized loss w.r.t. the number of iterations.

Second step consists in estimating the mean µ and standard deviation σ of the
codes coordinates (codes are encoded version of data). Then a critic maximization
is taking place so that we can estimate the Wassertein distance between the real
data and the decoded Gaussian noise associated withN (µ, σ) as shown in Fig. 29.
Here, the Gaussian parameter (µ, σ) and the decoder playing now the role of
generator are all remaining frozen (i. e. with zero learning rate) so that the critic
neural network can be considered as just a tool to estimate the Wasserstein
distance between fixed paramaters noise and generator data distribution and real
data distribution in a Kantorovich-Rubinstein maximization procedure.

4 https://www.thispersondoesnotexist.com

https://www.thispersondoesnotexist.com

F U T U R E W O R K A N D C O N C L U S I O N 121

Figure 28: Autoencoder mini-batch loss w.r.t. the number of iterations
(the lower the better, 50 iterations for 1 epoch)

Figure 29: Critic Mini-Batch Wasserstein Distance Estimate w.r.t. the
number of iterations. (the higher the better, 50 iterations for
1 epoch)

Third and final step is doing the original optimization scheme but now from a
relevant starting point (which is crucial in non-convex deep learning optimization
notoriously prone to spurious extrema). Fig. 30 is showing a direct minimization
in spite of the adversarial min-max learning procedure. Here all parameters
are allowed to vary meaning that the first two steps are just initialization steps
following the end-to-end recommendations.

All these steps (except the first and easy auto-encoder step) are greatly simpli-
fied thanks to the ease of using the Lipschitz property for the critic neural network
offered by Miyato et al. [2018] (this would not be reasonable with clipping [Ar-
jovsky et al., 2017] nor regularization term [Gulrajani et al., 2017]). Compared
to direct GAN training shown in Fig. 32, with fewer iterations and less tedious
selection of learning rates, our approach gets better results. Indeed, one-way
optimization schemes are easier than two-ways min-max optimization ones to
handle. With mastered tools described by LeCun et al. [1998] and decades of
shared good practice, one-way optimization (say minimization and not min-max
optimization) is well studied nowadays. This is to be put in contrast with the two
opposite learning rates required to the direct stochastically alternated method. To
be honest, in our case, the final step has the same min-max GAN-like algorithm

F U T U R E W O R K A N D C O N C L U S I O N 122

Figure 30: Our pre-trained GAN mini-batch objective w.r.t. the number
of iterations. (the lower the better, 550 iterations for 1 epoch
as each data mini-batch is seen 10 times for the critic and
once for the generator)

Figure 31: Oscillating GAN mini-batch objective w.r.t. the number of
iterations. (the lower the better, 550 iterations for 1 epoch as
each data mini-batch is seen 10 times for the critic and once
for the generator)

but the variations are better controlled in practice because the system is better
initialized.

F U T U R E W O R K A N D C O N C L U S I O N 123

Figure 32: Generated samples of our Wasserstein GAN trained on
CIFAR-10

B I B L I O G R A P H Y

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL
http://tensorflow.org/.

S. Abbott and C. A. Rogers. Hausdorff Measures, volume 83. Cambridge University
Press, 1999. doi: 10.2307/3619107.

A. Abouchar. Air Transport Demand, Congestion Costs, and the Theory of
Optimal Airport Use. The Canadian Journal of Economics, 3(3):463, 1970. ISSN
00084085. doi: 10.2307/133661.

S. Abu-El-Haija, N. Kothari, J. Lee, A. P. Natsev, G. Toderici, B. Varadarajan,
and S. Vijayanarasimhan. YouTube-8M: A Large-Scale Video Classification
Benchmark. Google Research, 2016. URL https://research.google/pubs/

pub45619.

Z. Ahmad. The epistemology of Ibn Khaldūn. Routledge, 2003. ISBN 020363389X.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows. Handbooks in

Operations Research and Management Science, 1(C):211–369, 1989. ISSN 09270507.
doi: 10.1016/S0927-0507(89)01005-4.

G. Alain and Y. Bengio. What regularized auto-encoders learn from the data-
generating distribution. Journal of Machine Learning Research, 15(1):3563–3593,
2014.

E. Aljalbout, V. Golkov, Y. Siddiqui, and D. Cremers. Clustering with deep
learning: Taxonomy and new methods. arXiv preprint arXiv:1801.07648, 2018.

L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows: in metric spaces and in the

space of probability measures. Springer Science & Business Media, 2008.

A. M. Andrew. An Introduction to Support Vector Machines and Other Kernel-

based Learning Methods, volume 30. Cambridge University Press, 2001. doi:
10.1108/k.2001.30.1.103.6.

124

http://tensorflow.org/
https://research.google/pubs/pub45619
https://research.google/pubs/pub45619

B I B L I O G R A P H Y 125

C. Archambeau and M. Verleysen. Manifold constrained variational mixtures. In
International Conference on Artificial Neural Networks, pages 279–284. Springer,
2005.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversar-
ial networks. In Proceedings of the 34th International Conference on Machine

Learning, Proceedings of Machine Learning Research. PMLR, 2017. URL
http://proceedings.mlr.press/v70/arjovsky17a.html.

S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang. Generalization and equilibrium
in generative adversarial nets (GANs). In 34th International Conference on

Machine Learning, ICML 2017, volume 1, pages 322–349. JMLR, 2017. ISBN
9781510855144.

D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding.
Technical Report 2006-13, Stanford InfoLab, June 2006. URL http://ilpubs.

stanford.edu:8090/778/.

F. Bach. Beyond stochastic gradient descent for large-scale machine learning,
2016. URL http://ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/

fbach{_}ecml{_}2014.pdf.

F. R. Bach and Z. Harchaoui. Diffrac: a discriminative and flexible frame-
work for clustering. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis,
editors, Advances in Neural Information Processing Systems 20, pages 49–
56. Curran Associates, Inc., 2008. URL http://papers.nips.cc/paper/

3269-diffrac-a-discriminative-and-flexible-framework-for-clustering.

pdf.

P. Baldi and K. Hornik. Neural networks and principal component analysis:
Learning from examples without local minima. Neural networks, 2(1):53–58,
1989.

D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press,
2011. doi: 10.1017/cbo9780511804779.

E. Barillot, L. Calzone, P. Hupe, J.-P. Vert, and A. Zinovyev. Computational systems

biology of cancer. CRC Press, 2012.

R. E. Bellman. Dynamic Programming. Rand Corporation Research Study. Prince-
ton University Press, 1957.

J. D. Benamou and Y. Brenier. A computational fluid mechanics solution to
the Monge-Kantorovich mass transfer problem. Numerische Mathematik, 84(3):
375–393, 2000. ISSN 0029599X. doi: 10.1007/s002110050002.

http://proceedings.mlr.press/v70/arjovsky17a.html
http://ilpubs.stanford.edu:8090/778/
http://ilpubs.stanford.edu:8090/778/
http://ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/fbach{_}ecml{_}2014.pdf
http://ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/fbach{_}ecml{_}2014.pdf
http://papers.nips.cc/paper/3269-diffrac-a-discriminative-and-flexible-framework-for-clustering.pdf
http://papers.nips.cc/paper/3269-diffrac-a-discriminative-and-flexible-framework-for-clustering.pdf
http://papers.nips.cc/paper/3269-diffrac-a-discriminative-and-flexible-framework-for-clustering.pdf

B I B L I O G R A P H Y 126

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and
new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(8):1798–1828, 2013. ISSN 01628828. doi: 10.1109/TPAMI.2013.50.

C. Bernard. Introduction à l’étude de la médecine expérimentale. Librairie Joseph
Gilbert, 1898.

D. P. Bertsekas. Nonlinear programming. Journal of the Operational Research Society,
48(3):334–334, 1997. ISSN 01605682. doi: 10.4018/978-1-4666-5202-6.ch147.

D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas. Dynamic

programming and optimal control. Athena scientific Belmont, MA, 1995.

C. Biernacki, G. Celeux, and G. Govaert. Assessing a mixture model for clustering
with the integrated completed likelihood. IEEE Pattern Analysis and Machine

Intelligence, 22(7):719–725, 2000. doi: 10.1109/34.865189.

E. Bingham and H. Mannila. Random projection in dimensionality reduction:
applications to image and text data. In D. Lee, M. Schkolnick, F. J. Provost,
and R. Srikant, editors, Proceedings of the seventh ACM SIGKDD International

Conference on Knowledge discovery and Data Mining, San Francisco, CA, USA,

August 26-29, 2001, pages 245–250. ACM, 2001. URL http://portal.acm.org/

citation.cfm?id=502512.502546.

C. Bishop. Mixture density networks. Technical report, January 1994.

C. M. Bishop. Pattern recognition. Machine Learning, 128, 2006.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of Machine

Learning Research, 2003. URL http://jmlr.org/papers/v3/blei03a.html.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review
for statisticians. Journal of the American statistical Association, 112(518):859–877,
2017.

P. Bojanowski and A. Joulin. Unsupervised learning by predicting noise. arXiv

preprint arXiv:1704.05310, 2017.

M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and
K. Zieba. End to end learning for self-driving cars. Thirtieth Conference

on Neural Information Processing Systems, abs/1604.07316, 2016. URL
https://images.nvidia.com/content/tegra/automotive/images/2016/

solutions/pdf/end-to-end-dl-using-px.pdf.

J.-F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal. Numerical

optimization: theoretical and practical aspects, volume 41. Springer Science and
Business Media, 2003. doi: 10.5860/choice.41-0357.

http://portal.acm.org/citation.cfm?id=502512.502546
http://portal.acm.org/citation.cfm?id=502512.502546
http://jmlr.org/papers/v3/blei03a.html
https://images.nvidia.com/content/tegra/automotive/images/2016/solutions/pdf/end-to-end-dl-using-px.pdf
https://images.nvidia.com/content/tegra/automotive/images/2016/solutions/pdf/end-to-end-dl-using-px.pdf

B I B L I O G R A P H Y 127

L. Bottou and Y. Bengio. Convergence Properties of the K-Means Algorithms. In
Advances in Neural Information Processing Systems, pages 585–592, 1995.

H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and
singular value decomposition. Biological cybernetics, 59(4-5):291–294, 1988.

C. Bouveyron and C. Brunet. On the estimation of the latent discriminative
subspace in the Fisher-EM algorithm. Journal de la Société Française de Statistique

& revue de statistique appliquée, 2011.

C. Bouveyron and C. Brunet. Simultaneous model-based clustering and visual-
ization in the fisher discriminative subspace. Statistics and Computing, 22(1):
301–324, 2012.

C. Bouveyron and C. Brunet-Saumard. Discriminative variable selection for
clustering with the sparse fisher-em algorithm. Computational Statistics, 29(3-4):
489–513, 2014a.

C. Bouveyron and C. Brunet-Saumard. Model-based clustering of high-
dimensional data: A review. Computational Statistics and Data Analysis, 71:
52–78, 2014b.

C. Bouveyron, S. Girard, and C. Schmid. High-Dimensional Data Clustering.
Computational Statistics and Data Analysis, 2007.

C. Bouveyron, G. Celeux, T. B. Murphy, and A. E. Raftery. Model-Based Clustering

and Classification for Data Science: With Applications in R. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press, 2019.

S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2014. ISBN 978-0-521-83378-3. doi: 10.1017/CBO9780511804441. URL
https://web.stanford.edu/%7Eboyd/cvxbook/.

L. Breiman. Probability, volume 7 of classics in applied mathematics. Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2:6, 1992.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, oct 2001. ISSN
08856125.

L. Breiman. Classification and regression trees. Routledge, 2017. ISBN
9781351460491.

A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training for high fidelity
natural image synthesis. 7th International Conference on Learning Representations,

ICLR 2019, 2019.

Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A. Efros. Large-
scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018.

https://web.stanford.edu/%7Eboyd/cvxbook/

B I B L I O G R A P H Y 128

O. Cappé and E. Moulines. On-line expectation–maximization algorithm for
latent data models. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 71(3):593–613, 2009.

M. Castelluccio. AI rising. Strategic Finance, 2017.

G. Celeux and G. Govaert. A classification EM algorithm for clustering and
two stochastic versions. Computational Statistics and Data Analysis, 14(3):315–
332, 1992. ISSN 01679473. doi: 10.1016/0167-9473(92)90042-E. URL http:

//www.sciencedirect.com/science/article/pii/016794739290042E.

A. Chakraborty, S. Ghosh, P. Mukhopadhyay, S. M. Dinara, A. Bag, M. K. Mahata,
R. Kumar, S. Das, J. Sanjay, S. Majumdar, and D. Biswas. Trapping effect
analysis of AlGaN/InGaN/GaN Heterostructure by conductance frequency
measurement. MRS Proceedings, XXXIII(2):81–87, 2014. ISSN 0717-6163. doi:
10.1007/s13398-014-0173-7.2.

T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma. Pcanet: A simple deep
learning baseline for image classification? IEEE Transactions on Image Processing,
24(12):5017–5032, 2015.

W.-C. Chang. On using principal components before separating a mixture of two
multivariate normal distributions. Applied Statistics, pages 267–275, 1983.

G. Chen. Deep learning with nonparametric clustering. arXiv preprint

arXiv:1501.03084, 2015.

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang. Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. Learning phrase representations using RNN encoder-decoder
for statistical machine translation. EMNLP 2014 - 2014 Conference on Empirical

Methods in Natural Language Processing, Proceedings of the Conference, pages
1724–1734, 2014. doi: 10.3115/v1/d14-1179.

A. Choromanska, T. Jebara, H. Kim, M. Mohan, and C. Monteleoni. Fast
spectral clustering via the nyström method. In Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), pages 367–381, 2013. ISBN 9783642409349. doi:
10.1007/978-3-642-40935-6_26.

N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy. Optimal Transport
for Domain Adaptation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 39(9):1853–1865, 2017.

http://www.sciencedirect.com/science/article/pii/016794739290042E
http://www.sciencedirect.com/science/article/pii/016794739290042E

B I B L I O G R A P H Y 129

N. Crasto, P. Weinzaepfel, K. Alahari, and C. Schmid. MARS: Motion-Augmented
RGB Stream for Action Recognition. In CVPR, 2019.

C. Cremer, X. Li, and D. Duvenaud. Inference suboptimality in variational
autoencoders. arXiv preprint arXiv:1801.03558, 2018.

M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 26, pages 2292–2300.
2013.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-

matics of control, signals and systems, 2(4):303–314, 1989.

S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani. Algorithms. McGraw-Hill
Higher Education, 2008.

T. R. Davidson, L. Falorsi, N. D. Cao, T. Kipf, and J. M. Tomczak. Hyperspher-
ical variational auto-encoders. pages 856–865, 2018. URL http://auai.org/

uai2018/proceedings/papers/309.pdf.

F. De la Torre and T. Kanade. Discriminative cluster analysis. pages 241–248,
2006.

H. De March. Multidimensional martingale optimal transport. Theses, Univer-
sité Paris-Saclay, June 2018. URL https://pastel.archives-ouvertes.fr/

tel-01973279.

C. R. de Sá. Variance-Based Feature Importance in Neural Networks. In Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-

gence and Lecture Notes in Bioinformatics), volume 11828 LNAI, pages 306–315.
Springer, 2019. ISBN 9783030337773. doi: 10.1007/978-3-030-33778-0_24.

A. Defazio, F. R. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradi-
ent method with support for non-strongly convex composite objectives. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27: Annual Conference

on Neural Information Processing Systems 2014, December 8-13 2014, Montreal,

Quebec, Canada, pages 1646–1654, 2014.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the royal statistical society. Series B

(methodological), pages 1–38, 1977.

N. S. Detlefsen, M. Jørgensen, and S. Hauberg. Reliable training and estimation of
variance networks. In Advances in Neural Information Processing Systems, pages
6323–6333, 2019. URL http://arxiv.org/abs/1906.03260.

http://auai.org/uai2018/proceedings/papers/309.pdf
http://auai.org/uai2018/proceedings/papers/309.pdf
https://pastel.archives-ouvertes.fr/tel-01973279
https://pastel.archives-ouvertes.fr/tel-01973279
http://arxiv.org/abs/1906.03260

B I B L I O G R A P H Y 130

N. Dilokthanakul, P. A. Mediano, M. Garnelo, M. C. Lee, H. Salimbeni, K. Arulku-
maran, and M. Shanahan. Deep unsupervised clustering with gaussian mixture
variational autoencoders. arXiv preprint arXiv:1611.02648, 2016.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real nvp.
International Conference on Learning Representations, 2017.

K. G. Dizaji, A. Herandi, C. Deng, W. Cai, and H. Huang. Deep clustering via joint
convolutional autoencoder embedding and relative entropy minimization. In
2017 IEEE International Conference on Computer Vision (ICCV), pages 5747–5756.
IEEE, 2017.

C. Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908,
2016.

C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. A. Efros. What makes paris look
like paris? ACM Transactions on Graphics (SIGGRAPH), 31(4):101:1–101:9, 2012.

J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial feature learning. Proceed-

ings of the International Conference on Learning Representations, 2016.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. John Wiley and Sons,
2012.

R. M. Dudley. Real analysis and probability. Chapman and Hall/CRC, 2018.

V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and
A. Courville. Adversarially learned inference. In International Conference on

Learning Representations, 2017.

E. S. Epstein. Stochastic dynamic prediction. Tellus, 21(6):739–759, 1969. doi:
10.3402/tellusa.v21i6.10143.

W. Fedus, M. Rosca, B. Lakshminarayanan, A. M. Dai, S. Mohamed, and I. Good-
fellow. Many paths to equilibrium: Gans do not need to decrease a divergence
at every step. arXiv preprint arXiv:1710.08446, 2017.

L. Fei-Fei. Imagenet: crowdsourcing, benchmarking and other cool things. In
CMU VASC Seminar, volume 16, pages 18–25, 2010.

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of

eugenics, 7(2):179–188, 1936.

R. Flamary, M. Cuturi, N. Courty, and A. Rakotomamonjy. Wasserstein discrimi-
nant analysis. Machine Learning, 107(12):1923–1945, 2018. ISSN 15730565. doi:
10.1007/s10994-018-5717-1.

B I B L I O G R A P H Y 131

C. Fraley and A. E. Raftery. Model-based clustering, discriminant analysis, and
density estimation. Journal of the American statistical Association, 97(458):611–631,
2002.

Y. Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

J. K. Galbraith. The pragmatism of John Kenneth Galbraith. Acta Oeconomica, 69
(s1):195–213, 2019. ISSN 15882659. doi: 10.1556/032.2019.69.S1.12.

T. Gao and V. Jojic. Degrees of freedom in deep neural networks. 32nd Conference

on Uncertainty in Artificial Intelligence 2016, UAI 2016, 2016.

A. Genevay. Entropy-regularized optimal transport for machine learning. PhD thesis,
2019.

A. Genevay, G. Peyré, and M. Cuturi. Learning Generative Models with Sinkhorn
Divergences. (2017-83), Oct. 2017. URL https://ideas.repec.org/p/crs/

wpaper/2017-83.html.

T. Glasmachers. Limits of end-to-end learning. arXiv preprint arXiv:1704.08305,
2017.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Y. W. Teh and M. Titterington, editors, Pro-

ceedings of the Thirteenth International Conference on Artificial Intelligence and

Statistics, volume 9 of Proceedings of Machine Learning Research, pages 249–
256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL
http://proceedings.mlr.press/v9/glorot10a.html.

A. V. Goldberg and R. E. Tarjan. Finding Minimum-Cost Circulations by Can-
celing Negative Cycles. Journal of the ACM (JACM), 36(4):873–886, 1989. ISSN
1557735X. doi: 10.1145/76359.76368.

Y. Goldberg. Neural network methods for natural language processing. Synthesis

Lectures on Human Language Technologies, 10(1):1–309, 2017.

G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. JHU Press, 2012.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural

Information Processing Systems, pages 2672–2680, 2014.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

I. J. Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. 2016. URL
http://arxiv.org/abs/1701.00160.

A. Graves. Stochastic backpropagation through mixture density distributions.
arXiv preprint arXiv:1607.05690, 2016.

https://ideas.repec.org/p/crs/wpaper/2017-83.html
https://ideas.repec.org/p/crs/wpaper/2017-83.html
http://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1701.00160

B I B L I O G R A P H Y 132

H. Greenspan, B. Van Ginneken, and R. M. Summers. Guest editorial deep
learning in medical imaging: Overview and future promise of an exciting new
technique. IEEE Transactions on Medical Imaging, 35(5):1153–1159, 2016.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved
training of wasserstein gans. arXiv preprint arXiv:1704.00028, 2017.

B. Hanin and M. Sellke. Approximating continuous functions by relu nets of
minimal width. CoRR, abs/1710.11278, 2017. URL http://arxiv.org/abs/

1710.11278.

Z. Harchaoui. Large-scale learning for image classification, 2013. URL https:

//harchaoui.org/zaid/cvml13.pdf.

T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin. The elements of statistical
learning: data mining, inference and prediction. The Mathematical Intelligencer,
27(2):83–85, 2005.

P. J. Hayes and S. P. Weinstein. Construe-TIS: A System for Content-based Index-
ing of a Database of News Stories. In Second Annual Conference on Innovative

Applications of Artificial Intelligence, volume 90, pages 49–64, 1990. ISBN 0-262-
68068-8.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,

Las Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer Society,
2016. URL https://arxiv.org/abs/1512.03385.

H. Hendrikx, F. Bach, and L. Massoulié. Accelerated decentralized optimization
with local updates for smooth and strongly convex objectives. In K. Chaud-
huri and M. Sugiyama, editors, The 22nd International Conference on Artificial

Intelligence and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan,
volume 89 of Proceedings of Machine Learning Research, pages 897–906. PMLR,
2019. URL http://proceedings.mlr.press/v89/hendrikx19a.html.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

K. Hornik. Approximation capabilities of multilayer feedforward networks.
Neural networks, 4(2):251–257, 1991.

W. Hu, T. Miyato, S. Tokui, E. Matsumoto, and M. Sugiyama. Learning discrete
representations via information maximizing self-augmented training. In D. Pre-
cup and Y. W. Teh, editors, Proceedings of the 34th International Conference on

Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages
1558–1567. PMLR, 06–11 Aug 2017.

http://arxiv.org/abs/1710.11278
http://arxiv.org/abs/1710.11278
https://harchaoui.org/zaid/cvml13.pdf
https://harchaoui.org/zaid/cvml13.pdf
https://arxiv.org/abs/1512.03385
http://proceedings.mlr.press/v89/hendrikx19a.html

B I B L I O G R A P H Y 133

P. Huang, Y. Huang, W. Wang, and L. Wang. Deep embedding network for
clustering. In Pattern Recognition (ICPR), 2014 22nd International Conference on,
pages 1532–1537. IEEE, 2014.

S.-J. Huang, R. Jin, and Z.-H. Zhou. Active Learning by Querying Informative
and Representative Examples. In Advances in Neural Information Processing

Systems, 2010.

A. K. Jain. Data clustering: 50 years beyond K-means. Pattern Recognition Letters,
2010. ISSN 01678655.

R. Jenatton. Structured sparsity-inducing norms: Statistical and algorithmic properties

with applications to neuroimaging. PhD thesis, 2011.

Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou. Variational deep embedding:
A generative approach to clustering. 2016. URL http://arxiv.org/abs/1611.

05148.

M. I. Jordan. On statistics, computation and scalability. Bernoulli Society for

Mathematical Statistics and Probability, abs/1309.7804, 2013. URL http://arxiv.

org/abs/1309.7804.

A. Joulin, F. R. Bach, and J. Ponce. Discriminative clustering for image co-
segmentation. In IEEE Conference on Computer Vision and Pattern Recog-

nition, CVPR, pages 1943–1950. IEEE, 2010. ISBN 9781424469840. URL
https://doi.org/10.1109/CVPR.2010.5539868.

O. Kallenberg. Random measures, theory and applications, volume 77. Springer,
2017.

A. Karpathy. The Unreasonable Effectiveness of Recurrent Neural Networks,
2015. URL http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

M. C. Kennedy and A. O’Hagan. Bayesian calibration of computer models. Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 63(3):425–464,
2001. ISSN 1369-7412. doi: 10.1111/1467-9868.00294.

O. Kilinc and I. Uysal. Learning latent representations in neural networks for
clustering through pseudo supervision and graph-based activity regularization.
In International Conference on Learning Representations, 2018. URL https://

openreview.net/forum?id=HkMvEOlAb.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. In Proceedings of

the 2nd International Conference on Learning Representations (ICLR), number 2014,
2013.

http://arxiv.org/abs/1611.05148
http://arxiv.org/abs/1611.05148
http://arxiv.org/abs/1309.7804
http://arxiv.org/abs/1309.7804
https://doi.org/10.1109/CVPR.2010.5539868
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://openreview.net/forum?id=HkMvEOlAb
https://openreview.net/forum?id=HkMvEOlAb

B I B L I O G R A P H Y 134

D. P. Kingma, T. Salimans, and M. Welling. Variational dropout and the local
reparameterization trick. In Advances in neural information processing systems,
pages 2575–2583, 2015.

D. P. Kingma, M. Welling, et al. An introduction to variational autoencoders.
Foundations and Trends® in Machine Learning, 12(4):307–392, 2019.

J. M. Kleinberg. An impossibility theorem for clustering. In Advances in Neural

Information Processing Systems, pages 463–470, 2015.

R. T. Knight. Neural networks debunk phrenology. Science, 316(5831):1578–1579,
2007. ISSN 00368075. doi: 10.1126/science.1144677.

N. Kokhlikyan, V. Miglani, M. Martin, E. Wang, J. Reynolds, A. Melnikov,
N. Lunova, and O. Reblitz-Richardson. Pytorch captum. https://github.

com/pytorch/captum, 2019.

M. A. Kramer. Nonlinear principal component analysis using autoassociative
neural networks. AIChE journal, 37(2):233–243, 1991.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

H. W. Kuhn. The hungarian method for the assignment problem. Naval research

logistics quarterly, 2(1-2):83–97, 1955.

Y. LeCun. What’s Wrong With Deep Learning? In IEEE Conference on Computer

Vision and Pattern Recognition, 2015. URL http://yann.lecun.com.

Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and time
series. MIT Press, Cambridge, 1995.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation Applied to Handwritten Zip Code Recognition.
Neural Computation, 1(4):541–551, 1989a. ISSN 0899-7667.

Y. LeCun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon, D. Henderson,
R. E. Howard, and W. Hubbard. Handwritten Digit Recognition: Applications
of Neural Network Chips and Automatic Learning. IEEE Communications

Magazine, 27(11):41–46, 1989b.

Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and
L. Jackel. Handwritten digit recognition with a back-propagation network. In
Advances in neural information processing systems 2, NIPS 1989, pages 396–404.
Morgan Kaufmann Publishers, 1990.

https://github.com/pytorch/captum
https://github.com/pytorch/captum
http://yann.lecun.com

B I B L I O G R A P H Y 135

Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang. A tutorial on
energy-based learning. Predicting structured data, 1(0), 2006.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In Neural

networks: Tricks of the trade, pages 9–48. Springer, 1998.

B. Lévy. A Numerical Algorithm for L2 Semi-Discrete Optimal Transport in 3D.
ESAIM: Mathematical Modelling and Numerical Analysis, 49(6):1693–1715, 2015.
ISSN 12903841. doi: 10.1051/m2an/2015055.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new benchmark collection for
text categorization research. Journal of machine learning research, 5(Apr):361–397,
2004.

J. Li, L. Deng, R. Haeb-Umbach, and Y. Gong. Fundamentals of speech recognition.
Pearson Education India, 2016. doi: 10.1016/b978-0-12-802398-3.00002-7.

R. Liao, A. Schwing, R. Zemel, and R. Urtasun. Learning deep parsimonious
representations. In Advances in Neural Information Processing Systems, pages
5076–5084, 2016.

Y. Liu, M. Yamada, Y. H. Tsai, T. Le, R. Salakhutdinov, and Y. Yang. Lsmi-sinkhorn:
Semi-supervised squared-loss mutual information estimation with optimal
transport. AAAI, abs/1909.02373, 2020. URL http://arxiv.org/abs/1909.

02373.

S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Informa-

tion Theory, 28(2):129–136, 1982. URL https://doi.org/10.1109/TIT.1982.

1056489.

L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine

Learning Research, 9(Nov):2579–2605, 2008.

D. J. MacKay. A practical bayesian framework for backpropagation networks.
Neural computation, 4(3):448–472, 1992.

J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration.
IEEE Transactions on image processing, 17(1):53–69, 2008.

A. Makhzani, J. Shlens, N. Jaitly, and I. Goodfellow. Adversarial autoencoders.
arXiv preprint arXiv:1511.05644, 2015.

S. Mallat. A wavelet tour of signal processing: the sparse way. Academic Press, Inc.,
2008.

http://arxiv.org/abs/1909.02373
http://arxiv.org/abs/1909.02373
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489

B I B L I O G R A P H Y 136

V. G. Maz’ya and T. O. Shaposhnikova. Jacques Hadamard: a universal mathematician.
Number 14. American Mathematical Soc., 1999.

Q. Mérigot. A multiscale approach to optimal transport. In Eurographics Sympo-

sium on Geometry Processing, volume 30, pages 1583–1592. Wiley Online Library,
2011. doi: 10.1111/j.1467-8659.2011.02032.x.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed represen-
tations ofwords and phrases and their compositionality. In Advances in Neural

Information Processing Systems, pages 3111–3119, 2013.

M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint

arXiv:1411.1784, 2014.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization
for generative adversarial networks. In International Conference on Learning

Representations, 2018.

G. Monge. Mémoire sur la théorie de déblais et de remblais. Histoire de
l’Académie Royale des science de Paris, avec les Mémoires de Mathématiques
et de Physique pour la même année, 1781. URL https://gallica.bnf.fr/ark:

/12148/bpt6k35800/f1.image.

S. Mukherjee, H. Asnani, E. Lin, and S. Kannan. ClusterGAN: Latent Space
Clustering in Generative Adversarial Networks. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 33, pages 4610–4617, 2019. doi:
10.1609/aaai.v33i01.33014610.

K. Murakami and H. Taguchi. Gesture recognition using recurrent neural net-
works. In Conference on Human Factors in Computing Systems - Proceedings, pages
237–242. ACM, 1991. ISBN 0897913833. doi: 10.1145/108844.108900.

K. Murphy. Machine Learning, a Probabilistic Perspective. MIT press, 2012.

R. Neal. Bayesian Learning for Neural Networks. PhD thesis, University of Toronto,
1995.

S. Newman. Descartes’ epistemology. Routledge, 2018.

A. Ng. Deep learning, 2013. URL https://www.youtube.com/watch?v=

n1ViNeWhC24.

A. Ng. The state of artificial intelligence, 2018. URL https://www.youtube.com/

watch?v=19IXayufFv4.

A. Y. Ng, M. I. Jordan, Y. Weiss, et al. On spectral clustering: Analysis and an
algorithm. 14(2):849–856, 2001.

https://gallica.bnf.fr/ark:/12148/bpt6k35800/f1.image
https://gallica.bnf.fr/ark:/12148/bpt6k35800/f1.image
https://www.youtube.com/watch?v=n1ViNeWhC24
https://www.youtube.com/watch?v=n1ViNeWhC24
https://www.youtube.com/watch?v=19IXayufFv4
https://www.youtube.com/watch?v=19IXayufFv4

B I B L I O G R A P H Y 137

D. A. Nix and A. S. Weigend. Estimating the mean and variance of the target
probability distribution. In Proceedings of 1994 ieee international conference on

neural networks (ICNN’94), volume 1, pages 55–60. IEEE, 1994.

Z. Pan, W. Yu, X. Yi, A. Khan, F. Yuan, and Y. Zheng. Recent Progress on Gen-
erative Adversarial Networks (GANs): A Survey. IEEE Access, 7:36322–36333,
2019. ISSN 21693536. doi: 10.1109/ACCESS.2019.2905015.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmai-
son, L. Antiga, and A. Lerer. Automatic differentiation in pytorch. In NIPS-W,
2017.

K. Pearson. Liii. on lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2
(11):559–572, 1901.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

B. Peters. The Age of Big Data. Forbes, 11(2012):4–9, 2012. URL http://www.

forbes.com/sites/bradpeters/2012/07/12/the-age-of-big-data/.

G. Peyré, M. Cuturi, et al. Computational optimal transport. Foundations and

Trends® in Machine Learning, 11(5-6):355–607, 2019.

J. Ponce and D. Forsyth. Computer vision: a modern approach. 2011.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes

3rd edition: The art of scientific computing. Cambridge university press, 2007.

J. Rabin, G. Peyré, J. Delon, and M. Bernot. Wasserstein barycenter and its
application to texture mixing. In Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
pages 435–446. Springer, 2012.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.

H. Robbins and S. Monro. A stochastic approximation method. The annals of

mathematical statistics, pages 400–407, 1951.

L. Roberts. Picture Coding Using Pseudo-Random Noise. IRE Transactions on

Information Theory, (2):145–154, 1962. ISSN 21682712.

http://www.forbes.com/sites/bradpeters/2012/07/12/the-age-of-big-data/
http://www.forbes.com/sites/bradpeters/2012/07/12/the-age-of-big-data/

B I B L I O G R A P H Y 138

F. Rosenbaltt. The perceptron–a perciving and recognizing automation. Report

85-460-1 Cornell Aeronautical Laboratory, Ithaca, Tech. Rep., 1957.

F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Technical Report 4, Cornell Aeronautical Lab Inc Buffalo NY,
1961.

C. Rother, V. Kolmogorov, and A. Blake. "grabcut": interactive foreground extrac-
tion using iterated graph cuts. ACM SIGGRAPH, 23(3):309–314, 2004.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen.
Improved techniques for training gans. In Advances in Neural Information

Processing Systems, pages 2234–2242, 2016.

F. Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY,
55(58-63):94, 2015.

C. Schmid. Active Large-scale Learning for Visual Recognition, 2013. URL
https://lear.inrialpes.fr/allegro.

B. Scholkopf and A. J. Smola. Learning With Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond. MIT press, 2001.

B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural computation, 10(5):1299–1319, 1998.

G. Schwarz et al. Estimating the dimension of a model. The annals of statistics, 6
(2):461–464, 1978.

M. Seeger. Gaussian processes for machine learning., volume 14. MIT press Cam-
bridge, MA, 2004. doi: 10.1142/S0129065704001899.

J. Shawe-Taylor, N. Cristianini, et al. Kernel methods for pattern analysis. Cambridge
university press, 2004.

D. Shu, J. Cunningham, G. Stump, S. W. Miller, M. A. Yukish, T. W. Simpson,
and C. S. Tucker. 3D Design Using Generative Adversarial Networks and
Physics-based Validation. Journal of Mechanical Design, 142(7):1–51, 2019. ISSN
1050-0472. doi: 10.1115/1.4045419.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop distributed file
system. In 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies,

MSST2010, 2010.

L. Smolinski. The Scale of Soviet Industrial Establishments. The American Economic

Review, 52(2):138–148, 1962. URL https://about.jstor.org/terms.

https://lear.inrialpes.fr/allegro
https://about.jstor.org/terms

B I B L I O G R A P H Y 139

R. Socher, C. C. Lin, A. Y. Ng, and C. D. Manning. Parsing natural scenes and
natural language with recursive neural networks. In L. Getoor and T. Scheffer,
editors, Proceedings of the 28th International Conference on Machine Learning,

ICML, pages 129–136. Omnipress, 2011. ISBN 9781450306195. URL https:

//icml.cc/2011/papers/125_icmlpaper.pdf.

C. Song, Y. Huang, F. Liu, Z. Wang, and L. Wang. Deep auto-encoder based
clustering. Intelligent Data Analysis, 18(6S):S65–S76, 2014.

S. Sonoda and N. Murata. Decoding stacked denoising autoencoders. arXiv

preprint arXiv:1605.02832, 2016.

N. Srivastava. Improving neural networks with dropout. University of Toronto,
182(566):7, 2013.

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15(1):1929–1958, 2014.

M. Stephens. Dealing with label switching in mixture models. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 62(4):795–809, 2000.

A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B. Kjærgaard, A. Dey,
T. Sonne, and M. M. Jensen. Smart devices are different: Assessing and miti-
gatingmobile sensing heterogeneities for activity recognition. pages 127–140,
2015.

J. Sun and J. Ponce. Learning Dictionary of Discriminative Part Detectors for
Image Categorization and Cosegmentation. In International Journal of Computer

Vision, volume 120, pages 111–133, 2016. doi: 10.1007/s11263-016-0899-0.

K. Sung, T. Poggio, H. Rowley, S. Baluja, and T. Kanade. MIT+ CMU frontal face
dataset a, b and c, 1998.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,
2018.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going Deeper with Convolutions. In Proceedings of

the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
volume 07-12-June-2015, pages 1–9, 2015. ISBN 9781467369640.

J. Thickstun, Z. Harchaoui, D. P. Foster, and S. M. Kakade. Invariances and
Data Augmentation for Supervised Music Transcription. In ICASSP, IEEE

International Conference on Acoustics, Speech and Signal Processing, 2018.

https://icml.cc/2011/papers/125_icmlpaper.pdf
https://icml.cc/2011/papers/125_icmlpaper.pdf

B I B L I O G R A P H Y 140

I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf. Wasserstein auto-encoders.
In International Conference on Learning Representations, 2018. URL https://

openreview.net/forum?id=HkL7n1-0b.

G. Trigeorgis, K. Bousmalis, S. Zafeiriou, and B. W. Schuller. A deep semi-nmf
model for learning hidden representations. In ICML, pages 1692–1700, 2014.

M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. In Computer

Vision and Pattern Recognition, 1991. Proceedings CVPR’91., IEEE Computer Society

Conference on, pages 586–591. IEEE, 1991.

M. Unser. A representer theorem for deep neural networks. arXiv preprint

arXiv:1802.09210, 2018.

J. Vermorel. Probabilistic forecasting, 2018. URL https://youtu.be/

KXC-hPCojGQ.

J.-P. Vert. Learning from ranks, learning to rank. URL http://members.cbio.

mines-paristech.fr/~jvert/talks/200114turing/turing.pdf.

R. Vidal, J. Bruna, R. Giryes, and S. Soatto. Mathematics of deep learning, 2017.
URL https://www.youtube.com/watch?v=eEPXTMHnBJA.

C. Villani. Optimal transport: old and new, volume 338. Springer Science and
Business Media, 2008.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked
denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion. Journal of Machine Learning Research, 11(Dec):
3371–3408, 2010.

P. A. Viola and M. J. Jones. Robust real-time face detection. In Proceedings of the

Eighth International Conference On Computer Vision (ICCV-01), Vancouver, British

Columbia, Canada, July 7-14, 2001 - Volume 2, page 747. IEEE Computer Society,
2001.

U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):
395–416, 2007.

Z. Wang, S. Chang, J. Zhou, M. Wang, and T. S. Huang. Learning a task-specific
deep architecture for clustering. In Proceedings of the 2016 SIAM International

Conference on Data Mining, pages 369–377. SIAM, 2016.

J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep embedding for clustering
analysis. arXiv preprint arXiv:1511.06335, 2015.

B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong. Towards k-means-
friendly spaces: Simultaneous deep learning and clustering. arXiv preprint

arXiv:1610.04794, 2016a.

https://openreview.net/forum?id=HkL7n1-0b
https://openreview.net/forum?id=HkL7n1-0b
https://youtu.be/KXC-hPCojGQ
https://youtu.be/KXC-hPCojGQ
http://members.cbio.mines-paristech.fr/~jvert/talks/200114turing/turing.pdf
http://members.cbio.mines-paristech.fr/~jvert/talks/200114turing/turing.pdf
https://www.youtube.com/watch?v=eEPXTMHnBJA

B I B L I O G R A P H Y 141

J. Yang, D. Parikh, and D. Batra. Joint Unsupervised Learning of Deep Represen-
tations and Image Clusters. 2016b. URL http://arxiv.org/abs/1604.03628.

X. Yuan, P. He, Q. Zhu, and X. Li. Adversarial examples: Attacks and defenses
for deep learning. IEEE transactions on neural networks and learning systems, 30
(9):2805–2824, 2019.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
Cluster computing with working sets. 2nd USENIX Workshop on Hot Topics in

Cloud Computing, HotCloud 2010, 2010.

M. Zaslavskiy. Graph matching and its application in computer vision and computa-

tional biology R ´ esum ´ e. PhD thesis, Mines de Paris, 2010.

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional net-
works. In Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics). Springer, 2014. ISBN
9783319105895.

L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. Advances in neural

information processing systems, 17(1601-1608):16, 2004.

X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional networks for
text classification. In Advances in Neural Information Processing Systems, pages
649–657, 2015.

P. Zikoupoulos and C. Eaton. Understanding big data: Analytics for Enterprise Class

Hadoop and Streaming, volume 11. McGraw-Hill Osborne Media, 2016. ISBN
9780071790536.

V. Zue, S. Seneff, and J. Glass. Speech database development at MIT: Timit and
beyond. Speech Communication, 1990. ISSN 01676393.

http://arxiv.org/abs/1604.03628

	Cover Page
	Dedication
	Abstracts in French and English
	Contents

	State of the Art
	Wasserstein Clustering
	Unsupervised Feature Importance
	Prediction with Uncertainty
	Conclusion
	Appendix: Generative Adversarial Networks Pretraining
	Bibliography

