
Appendix

Warith HARCHAOUI

Introduction

For dramatic computational speed improvements reasons, some pretraining techniques from 1990s
are less popular nowadays in neural networks training. Recently, the rise of Generative Adversarial
Networks (GANs) initiated by Goodfellow et al. [2014] is revisiting a new kind of optimization: not
an usual minimization problem but a min-max problem hence the adjective adversarial which is thus
more difficult to monitor. In practice, for same domain (or medium) data, it is possible to use the same
structure and hyper-parameters as other authors e. g. the DCGAN structure by Radford et al. [2015]
for images. Unfortunately, for custom data such as genomics data, there is a need for practical rule of
thumbs to begin working for new kinds of data and neural networks and particularly wirh GANs.

Historically, neural networks experts used to train an unsupervised auto-encoder, in order to
keep the encoder as an initialization of the neural network now trained in a supervised fashion. This
pre-training technique seems to save a lot of time during an era of expensive and long computations.
The aim of this appendix is to follow this kind of reasoning to initialize GANs that are notoriously
painful to train and monitor without further data knowledge.

Similar Objectives

Let’s study the Wasserstein GAN [Arjovsky et al., 2017] objective function with a generator G, a real
data distribution p living in RD, and noise generator distribution n living in Rd

min
G

W(p, qG) (1)

where the Wasserstein distance W(p, qG) is defined between the distributions of real data p and
generator data qG (defined by y ∼ qG ⇐⇒ z ∼ n, and y = G(z))

W(p, qG) = min
γ∈Γ(p,qG )

E(x,y)∼γ [‖y− x‖2] = min
γ′∈Γ(p,n)

E(x,z)∼γ′ [‖G(z)− x‖2] (2)

where Γ(p, q) stands for the set of couplings γ based on the two marginal distributions p and q. In
the GAN literature, this is reformulated by thanks to the Kantorovich-Rubinstein duality but in this
appendix, we will still use the Wasserstein formulation.

Indeed, if we look at that auto-encoder objective function made of an encoder E and decoder D:

min
E ,D

AE(p, E ,D) (3)

where the AE operator is simply the mean distance between the original data from p and the same
data distorted by an encoder E followed by a decoder D:

AE(p, pE ,D) = Ex∼p [‖D ◦ E(x)− x‖2] (4)

We believe that equations Eq. (2) and Eq. (4) are similar. Training an auto-encoder and training a
generative adversarial network are both unsupervised but auto-encoder are easier to train because
there is only a one-way minimization which is not the case for GANs that have two-ways type of
minimization (min-max) w.r.t. different parameters.

1



By training an auto-encoder, we get a reasonable reconstruction loss for output functions E
encoder and D decoder. Now, it is possible to estimate the mean µ = 1

N ∑N
i=1 E(xi) and covariance

σ =
√

1
N ∑N

i=1 (E(xi)− µ)2 (with element-wise square root and square functions). The intuition is
that for a Gaussian noise ε ∼ N (0d, Id), then the decoded points D(µ + σ × ε) (with element-wise
product) has a distribution that is close to decoded codes D ◦ E(x) which is close to the original data x.
This way, we made a reasonable initialization for a generator made of a Gaussian noise into a linear
layer from empirical mean µ and standard deviations σ followed by the decoder function D.

Early on since the beginning of the GAN literature in 2014, deep learning scientists saw the
potential of seeing the min-max optimization scheme as the minimization of a discrepancy between
real and generated data where that discrepancy required and adversarial optimization for estimation
[Goodfellow, 2016] (i. e. a maximization of an objective to be minimized in fine). Back to our work, at
this point, the auto-encoder training was a traditional one-way minimization but now the adversarial
network (or critic against the generator) is needed to measure the discrepancy we just mentioned
between real and generated data. In our Wasserstein discrepancy case, this correponds to only
maximization via the Kantorovich-Rubinstein duality of the Wasserstein distance. Once both the
generator from the auto-encoder minimization and next the critic from the discrepancy maximization
for estimation are done. We actually not only know how far our generator (i. e. decoder) combined
with our noise generator is from the real data distribution but we also get a convincing initialization
for regular GANs training.

To sum up, we propose three steps:

1. Auto-Encoder Minimization for the euclidean reconstruction error to be low;

2. Critic Maximization until real v. s. generated discrepancy has plateaued out;

3. Regular GAN Min-Max optimization with a generator initialized by a Gaussian fitting the
encoded codes followed by the decoder on the one side and the critic previously maximizing
the real v. s. generated discrepancy on the other side;

which is much easier for monitoring and prototyping as getting rid off an unpredictable objective
variations behavior especially at the first epochs contributes to acceleration of development and
robustness w.r.t. uncontrolled objective variations. In these conditions, finding hyper-parameters is
much more simplified.

Experiments training DCGAN on CIFAR-10

Generative Adversarial Networks [Goodfellow et al., 2014] really attracted the research community
attention when image rendering started to get convincing especially with the spark ignition DCGAN
work of Radford et al. [2015] with a recent research and engineering accomplishment in extremely
large scale settings of BigGAN [Brock et al., 2019] and mainstream press demos1. Following this trend,
we use the same neural network structure as DCGAN [Radford et al., 2015] shown in Fig. 1 for a
Wasserstein GAN trained on CIFAR-10 images dataset [?].

64x64x3
32x32x128

16x16x256 8x8x512 4x4x1024 100
conv 5x5
stride 2

conv 5x5
stride 2

conv 5x5
stride 2

conv 5x5
stride 2

dense

Figure 1: DCGAN encoder structure, the critic has same structure (with an additional 100-1 perceptron layer)
and the decoder/generator has a symmetric structure

In this section, we use Adam [Kingma and Ba, 2014] default parameter with 10−6 for generator
learning rate and 10−5 for critic learning rate and also 10−5 the one-way minimization learning rate.

1https://www.thispersondoesnotexist.com

2

https://www.thispersondoesnotexist.com


Moreover, in min-max optimizations, we do 10 max iterations followed by 1 min iteration for each
data mini-batch. The first step according to our section consists in training an auto-encoder. Fig. 2 is
showing the evolution of the minimized loss w.r.t. the number of iterations.

Figure 2: Autoencoder mini-batch loss w.r.t. the number of iterations (the lower the better, 50 iterations for 1
epoch)

Second step consists in estimating the mean µ and standard deviation σ of the codes coordinates
(codes are encoded version of data). Then a critic maximization is taking place so that we can estimate
the Wassertein distance between the real data and the decoded Gaussian noise associated withN (µ, σ)
as shown in Fig. 3. Here, the Gaussian parameter (µ, σ) and the decoder playing now the role of
generator are all remaining frozen (i. e. with zero learning rate) so that the critic neural network
can be considered as just a tool to estimate the Wasserstein distance between fixed paramaters noise
and generator data distribution and real data distribution in a Kantorovich-Rubinstein maximization
procedure.

Figure 3: Critic Mini-Batch Wasserstein Distance Estimate w.r.t. the number of iterations. (the higher the better,
50 iterations for 1 epoch)

Third and final step is doing the original optimization scheme but now from a relevant starting
point (which is crucial in non-convex deep learning optimization notoriously prone to spurious ex-
trema). Fig. 4 is showing a direct minimization in spite of the adversarial min-max learning procedure.
Here all parameters are allowed to vary meaning that the first two steps are just initialization steps
following the end-to-end recommendations.

All these steps (except the first and easy auto-encoder step) are greatly simplified thanks to the
ease of using the Lipschitz property for the critic neural network offered by Miyato et al. [2018] (this
would not be reasonable with clipping [Arjovsky et al., 2017] nor regularization term [Gulrajani et al.,

3



Figure 4: Our pre-trained GAN mini-batch objective w.r.t. the number of iterations. (the lower the better, 550
iterations for 1 epoch as each data mini-batch is seen 10 times for the critic and once for the generator)

Figure 5: Oscillating GAN mini-batch objective w.r.t. the number of iterations. (the lower the better, 550
iterations for 1 epoch as each data mini-batch is seen 10 times for the critic and once for the generator)

2017]). Compared to direct GAN training shown in Fig. 6, with fewer iterations and less tedious
selection of learning rates, our approach gets better results. Indeed, one-way optimization schemes
are easier than two-ways min-max optimization ones to handle. With mastered tools described by
LeCun et al. [1998] and decades of shared good practice, one-way optimization (say minimization
and not min-max optimization) is well studied nowadays. This is to be put in contrast with the two
opposite learning rates required to the direct stochastically alternated method. To be honest, in our
case, the final step has the same min-max GAN-like algorithm but the variations are better controlled
in practice because the system is better initialized.

4



Figure 6: Generated samples of our Wasserstein GAN trained on CIFAR-10

References

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In Proceedings
of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research.
PMLR, 2017. URL http://proceedings.mlr.press/v70/arjovsky17a.html.

A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training for high fidelity natural image
synthesis. 7th International Conference on Learning Representations, ICLR 2019, 2019.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. In Advances in Neural Information Processing Systems, pages 2672–2680,
2014.

I. J. Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. 2016. URL http://arxiv.org/
abs/1701.00160.

5

http://proceedings.mlr.press/v70/arjovsky17a.html
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160


I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved training of wasserstein
gans. arXiv preprint arXiv:1704.00028, 2017.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In Neural networks: Tricks of the
trade, pages 9–48. Springer, 1998.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative adversarial
networks. In International Conference on Learning Representations, 2018.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

6


